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Abstract

In the advent of the omnipresence of robotics in our day to day lives, progressions are made in
this field continuously. In particular, the recent developments achieved within the area of legged
robotics substantiate their growing importance for present and future applications. Robust and
accurate state estimation capabilities are essential to the feedback control that enables legged
robots to function within their expanding range of deployment. This performance is achieved by
employing sensor fusion frameworks that combine multiple measurements to produce an estimate
of the robots state. The approaches discussed in this thesis focus on using information provided by
proprioceptive sensors to maintain robustness and fast estimation times. Further, the approaches
employ sensor fusion by means of stochastic Kalman Filtering methods. The challenges presented
by state estimation for legged robots however lead to estimation approaches that entail ever increas-
ing implementation complexity to guarantee the accuracy of the estimate. Further, the amount
of research being done within this field steadily increases the different state estimation techniques
available for legged robots. While substantial progress is being made, not every increase in com-
plexity is justified by its increase in accuracy.

The significance of the robot’s estimation capability emphasizes the need for constant review and
comparison between multiple state-of-the-art estimation approaches. This is further asserted by
the multitude of techniques proposed, as well as by the tendency to higher implementation com-
plexity.

Building on the analysis of previous work, this thesis aims at implementing, combining and compar-
ing different state-of-the-art state estimation approaches for legged robots. The implementations
are tested in simulation and the results are evaluated. An emphasis is placed on the accuracy with
which the approaches handle the challenges of state estimation for legged robots, as well as the
level of implementation complexity they require to do so. As a result of this thesis, a Two Stage
Estimation framework that separates linear and nonlinear estimation is proposed, which is based
on prior work. The employment of an Unscented Kalman Filter for orientation estimation and
a Classical Kalman Filter for position and velocity estimation is suggested, outlining the path to
simpler and more accurate state estimation approaches for legged robots.
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Chapter 1

Introduction

Throughout the rigorous process of evolution, legged locomotion has established itself as an efficient
solution to navigating the rough terrain our planet consists of. The traits exhibited by this type of
mobility present it as evidently preferable to other locomotion types in this context[8, 27, 10, 6, 12].
The limitations wheeled or tracked mobility faces in challenging environments are greatly reduced
when the versatility of deployment enabled by legs is considered [6, 20]. These implications have led
to the awareness of the disruptive possibilities legged locomotion presents for the field of robotics
[6, 8]. As Bloesch [8] states, implementations of legged locomotion have greatly expanded the range
of industry applications of robots within the fields of search and rescue, agriculture, mining, nu-
clear power, forestry, resource exploration, health care, or public services. The benefits presented
by legged locomotion and its applications have recently led to significant progress in the develop-
ment of ever improving legged robot platforms capable of dynamical stabilization [8, 19, 6, 20].
The mobility and versatility offered by platforms such as the quadrupedal robots ANYmal [20],
StarlETH [19], MIT Cheetah 3 [6] or Boston Dynamics Spot® underline the progress made by
state-of-the-art legged robot implementations.

While the research in robot design and control are at the core of this development, the perceptive
and estimation capacities of these platforms are essential to sustaining the increasing complex-
ity and breadth of application [10, 8, 18]. To enable the advancement of algorithms for motion
planning, as well as the robust feedback controllers necessary, accurate and fast estimates of the
robot’s state are required [10, 18, 9, 12]. Especially for trajectory planning and stabilization in
rough or uneven terrain, a state estimator’s precision is crucial to its successful deployment [10].
Further, when the robot is employed for tasks requiring a highly dynamic gait, state estimation
may potentially become a bottleneck for speed and robustness within the control pipeline [10].
Spurred by the development of legged robot platforms, the importance of continuous review and
improvement of state-of-the-art state estimation approaches becomes evident.

In this context, proprioceptive approaches present themselves as preferable estimation techniques
[8]. Notably, the state-of-the-art state estimation approaches presented by Bledt et al. [6] and
Bloesch et al. [10] succeed in employing proprioceptive sensors, namely an Inertial Measurement
Unit (IMU) and joint encoders, to generate estimates of the robot’s state with great precision.
Apart from the required estimation accuracy, robustness and low estimation time, state estimation
for legged robots presents three main challenges which must be considered when deriving a respec-
tive approach: sensors biases, sensor noise and nonlinear orientation dynamics. To address these
issues, state estimators based on a stochastic Kalman Filtering approach are commonly employed
[15]. While Bloesch et al. employ an Extended Kalman Filter which linearizes the dynamics to
circumvent the nonlinearities [33, 28], Bledt et al. propose a Two Stage Estimation approach. In
the Two Stage approach, the linear position and velocity estimation is done separately using a
Classical Kalman Filter [25], while a Complementary Filter [31] is used for orientation estimation.
Both further include leg kinematic measurements into their estimation to increase its accuracy and



to avoid employing computationally more expensive approaches [10].

With ever developing extension to the Kalman Filtering approach, the complexity of implementa-
tion rises simultaneously. With it, the difficulty of tuning the filter, adapting it or expanding it to
new states increases. This begs the question whether the implementation complexity is justified
by increase in estimation accuracy it entails or if simpler approaches exist that provide similar
estimates. The Two Stage Estimator developed by Bledt et al. [6] presents an estimation approach
which greatly decreases the complexity of implementation as compared to the EKF [6, 16]. As the
linear states are now estimated by the Classical Kalman Filter, which is the optimal estimator in
this case |25, 3|, increased accuracy of position and velocity estimates are also to be expected. The
orientation filter employed by Bledt et al. consists of a Complementary Filter implementation by
Madgwick [31]. The Complementary Filter uses basic mechanisms of sensor fusion to efficiently
combine gyroscope and accelerometer readings, resulting in a simple but accurate orientation esti-
mator. Despite its simplicity, recent Kalman Filtering extensions such as the Unscented Kalman
Filter [41, 30, 23] present viable alternatives to the Complementary Filter. The Unscented Kalman
Filter provides the possibility of combining a Kalman Filtering approach for orientation estimation,
while avoiding linearization and maintaining a relatively low complexity of implementation.

Considering the rapid developments within the field of legged robots and state estimation, as well
as the aim to bring accuracy and complexity into accordance, the necessity of combining and
comparing different estimation approaches becomes apparent. Based on prior work, the objective
of this thesis is to implement and evaluate different approaches to state estimation for legged
robots. A particular emphasis is placed on their ability to tackle the challenges presented by state
estimation for legged robots, as well as their level of implementation complexity needed to do so.
This is done by comparing and evaluating the performance of the Two Stage Estimation approach
proposed by Bledt et al. [6] using both a Complementary Filter, as well as an Unscented Kalman
Filter for orientation estimation, to that of the Extended Kalman Filter presented by Bloesch et
al. [10]. To enable this comparison, the general and implementation specific background of the
estimators is first expanded upon. Subsequently they are tested in simulation, using realistically
generated measurements, across different scenarios. The resulting data is then evaluated and the
differences between the estimation performances are highlighted and discussed with a distinction
made between orientation estimation and position and velocity estimation. The filtering approaches
best conforming with the mentioned criteria of accuracy and implementation complexity are then
determined as the result of the comparison made in this thesis.



Chapter 2

Theory

In the following chapter, an introduction to State Estimation for legged robots, its machinery
and the underlying theory of sensor fusion is presented. More specifically, the Kalman Filter is
introduced in a general manner and its extensions to nonlinear estimation are discussed. Lastly, the
Complementary Filter is proposed as an alternative to Kalman Filtering for orientation estimation.

2.1 Introduction to State Estimation

2.1.1 What is State Estimation?

State Estimation is a stochastic approach commonly employed in robotics to determine the prob-
abilistic distribution of a robot’s state. In order to control a robot successfully, accurate feedback
about its current state must be available. The integration of a state estimator in the control
pipeline relevant to this project is shown in Fig. 2.1.

i T
user__, | Trajectory | Contac Stes |\ Body Control | ————3|Joint-Level Control
put Planner Reaction force d d
Position cmd .9

Robot AN 7 \1/
Stalel Joint Encoder D
. . . M oint Encoder Data

Dynamic & Kinematic State Estimator Robot
Model Foot Pos. IMU Data

Figure 2.1: The State Estimator integrated into the Control Pipeline of the legged robot system
employed in this project. The State Estimator acts as the link between the real robot and the
framework used to control it. Using inertial measurements and joint encoder data from sensors
employed on the robot, it generates an estimate of the robot’s state using the dynamic and kine-
matic models of the system. This estimate is then provided to the Trajectory Planner and the
Whole-Body Controller to derive the next control input.

While the system dynamics combined with the control input allow for the calculation of an ex-
pected state development, the robot’s environment can strongly influence its motion by applying
unknown external forces or torques. This disturbance introduces inaccuracies in the expected state
which need to be accounted for. In robotics, this is done by employing sensors and forward kine-
matic models to supply a measurement feedback of the robot’s current state. Again however, the
measured state provided by the sensors is afflicted by inaccuracies due to noise and biases present
in the measurements. State estimation thus condenses to combining these two imperfect state
distributions to provide an estimate with increased accuracy. By using sensor fusion to combine
the process model prediction with the measurements, as well as prior information about the model
and sensor inaccuracies, the controller can be provided with an accurate estimate of the robot’s
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state from which both the trajectory and the necessary control inputs can be derived. A basic
overview of the state estimation mechanism is shown in Fig. 2.2.

process measurement

noise noise
w n
i L measured output
input © z

system: state x

state estimator

state estimate &

Figure 2.2: An overview of state estimation for dynamic systems showing how the state estimate
Z is derived from the known input v and measured output z.

2.1.2 What is the State?

In legged robotics, state estimation is a framework that allows for estimation of the full pose. This
means, four of the robot’s state variables are estimated: position 7, velocity v, angular velocity w
and orientation ¢. Along with acceleration measurements and prior knowledge of gravity direction
and magnitude, these variables fully describe the system dynamics and make up the basic estimated
state. Depending on the application and filtering approach, extensions to this basic state exist.
Especially in legged robotics, state-of-the-art approaches include other variables such as the foot
contact positions, as well as sensor bias terms. These are estimated in addition the robot’s pose
[6, 9, 10, 17]. This is done to increase the accuracy of the state estimate by efficiently including as
much information as possible into the estimation process. The N dimensional state is commonly
represented in vector form according to eq. 2.1, where k refers to the current discrete timestep and
X, is the state vector:

T = [’I"k Vi W Qg ] S RN (21)

As state estimation is a stochastic approach, the state itself is a random variable with a mean g
and state covariance matrix P,. What we commonly refer to as the state estimate & is simply the
mean of the state random variable.

2.1.3 State Estimation for Legged Robots

While state estimation is an essential part of the control pipeline in many different applications,
each framework has its own dynamics and characteristics that must be considered when developing
a suitable estimator. In the following, the dynamics involved in legged robot state estimation are
introduced and subsequently, the challenges surrounding this specific application are discussed.

Legged Robot Dynamics

The differential equations governing the dynamic model of a legged robot are as follows [10]:
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r=v (2.2

i;:a:{,BVCf—i—g 2.3
1

tj:iq@w (2.4)

Here a is the absolute acceleration of the robot’s body in the world frame W, and f is the proper
acceleration measured by the accelerometer in the body frame B. These two entities are related as
follows:

f=wC"(a—g) (2.5)

B C is the orientation matrix which rotates any vector Py from the B to the W:

Wy — B OBy (2.6)

These equations form the foundation of the process model prediction of the state estimation algo-
rithm, as described in section 2.2.

Challenges of State Estimation for Legged Robots

When tackling the challenge of state estimation for legged robots, there are, apart from the es-
timation itself, three main issues that must be kept in mind and dealt with when developing an
estimation scheme:

1. Sensor Biases: Current state-of-the-art estimation approaches for legged robots rely on in-
ertial sensors to provide essential measurements for the estimation process [10, 6, 29]. More
precisely, Inertial Measurement Units (IMUs) are used to provide measurements of the robot’s
current angular velocity using a gyroscope, as well as its acceleration by means of an ac-
celerometer [38]. Given perfect measurements and a perfect system model, these measure-
ments alone would be sufficient to compute the robot’s pose by means of dead-reckoning,
as becomes evident from Fig. 2.3 [29]. However, biases are present in both sensors, which
lead to accumulation of errors in the orientation estimation. Further, as the position esti-
mation relies on double integration of accelerometer readings and is inherently linked to the
orientation, it is effected even stronger by any biases present [29].

2. Sensor Noise: The second aspect that decreases the accuracy of the estimates is measurement
noise. Assumed to be of Gaussian distribution [6, 10], noise is present in most any sensor
reading and is further amplified by external factors such as foot-slippage or leg impact. Due to
the nature of locomotion employed by legged robots, the latter has a considerable influence on
the sensors measurements, which are rendered increasingly noisy due to intermittent ground
impacts while walking [17].

3. Nonlinearity: A final challenge is presented in the form of the orientation estimation itself.
While position estimation is a purely linear process, orientation estimation is an inherently
nonlinear process [6]. By propagating a state variable through a nonlinear process or mea-
surement model, the underlying assumption of a Gaussian distribution necessary for the
conventional Kalman Filtering approach employed in this project is violated [37]. Therefore,
alternative methods must be applied to deal with this nonlinearity efficiently .
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angular velocity /F orientation

acceleration
remove
gravity

Figure 2.3: Dead-reckoning schematic for pose estimation according to [29]. The inherent link
between orientation and position estimation, as well as the double integration necessary is evident.

external
specific

force position

2.2 The Kalman Filter

Different methods for state estimation exist and the choice of the estimation approach is based
on the robot’s structure and operating environment [17]. Due to the challenges presented in
section 2.1.3, as well as the process and kinematic models available, this project focuses on using
a Kalman Filter based approach to state estimation. Kalman Filtering is a stochastic recursive
estimation technique that combines information about the system, measurement devices, input
and measured output to provide an estimate of the state distribution of a dynamic system [42, 28,
32, 25]. While the Classical Kalman Filter (KF) is suited for the estimation of linear systems, for
which it can be seen as the optimal estimator [39, 32|. However, there exist extensions to nonlinear
applications. Most commonly the Extended Kalman Filter (EKF) [37, 33], Unscented Kalman
Filter (UKF) [24, 41, 23] and the Invariant Extended Kalman Filter (InEKF) [11, 5, 18] are used
for the estimation of nonlinear systems. In the following, the Classical Kalman Filter is presented
from which the extensions are then derived. Fig. 2.4 shows the three different Kalman Filters —
the KF, EKF and UKF — employed in this project.

Estimated State @ k-1 Estimated State @ k-1

Linearization

Process Model

Estimated State @ k-1

Process Model Process Model

Measurement Model Prediction

Correction

Measurements

Measurement Model Prediction

Correction

Measurements

Measurement Model Prediction

Correction

Measurements

Update Update Update

Estimated State @ k Estimated State @ k Estimated State @ k

Figure 2.4: Overview of the Kalman Filter approaches: Classical KF (left), EKF (center), UKF
(right). Here k is the discrete timestep.

2.2.1 The Classical Kalman Filter

The Classical Kalman Filter follows the assumption of a linear process and measurement model,
as well as a Gaussian distribution of the state, noise variables and initial conditions. The linear,
discrete-time and time-varying system for which the Kalman Filter is applied is shown in eq. 2.7
and eq. 2.8 [3]:
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x, =Ax,_1+Bup +wp k= 1,2,... (27)
2z, =Crxp+mn, k=0,1,... (2.8)

system state : x, € RV (2.9)
initial state : &g € RY ~ N (&0, ]50) (2.10)

input : u, € RY (2.11)

process noise : wy, € RY ~ N (0, Q) (2.12)
measurement : z, € RM (2.13)
measurement noise : nj, € RM ~ A (0, Ry) (2.14)

A is the process model, B the control model and C' the measurement model of our system. These
models are determined by the system dynamics and the filter design. &o and Py are the initial
conditions of the state, @ is the process noise covariance and Ry, is the measurement noise covari-
ance. As before, these parameters are determined by the specific application.

The Kalman Filter framework is divided into two steps: the Prediction and the Update [28], which
are elucidated in the following sections.

The Prediction

In the prediction step, an a priori estimate &, of the state is computed by propagating the
previous a posteriori estimate :fc;r_l through the process model A and adding the control input Buy.
Further, an a priori estimate of the covariance If’k_ is calculated in a similar fashion, combining
prior knowledge of the previous state covariance ]5,;'“71 and the process noise covariance Qy:

&, = Az} | + Buy, (2.15)
Py = AP (AT +Qx (2.16)

In essence, the prediction step constitutes of combining prior knowledge of the previous state with
knowledge of the system dynamics, input and covariance to produce a first estimate of the state.

The Update

The update is initiated once the next measurement of the current state becomes available. In this
step, the measured outcome is used to compute a weighted mean between the a priori estimate &,
and the measured state z. First, the innovation vy, is computed which is weighted by the Kalman
Gain K} and combined with the a priori estimate &, to calculate the a posteriori estimate &;
of the state. In a final step, the state covariance is updated such that we receive the a posteriori

estimate ]5,: .

Y, =z — Cx;,

K, =P, CT(R+CP;CT)™!
Ty =@y + Ky

P =(I - K,0)P;

This step can be seen as combining two different state distributions and weighting them by con-
sidering the uncertainties (covariances) involved in their derivation, such that the best estimate of
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the real state can be computed.

The main drawback of the Classical Kalman Filter is its inability to deal with nonlinear process
and measurement models. Due to its dependence on Gaussian distributions, any nonlinearity
would corrupt this assumption and thus invalidate any further updates [24, 37]. To overcome this
challenge, extensions have been developed which deal with the nonlinearity in different ways.

2.2.2 The Extended Kalman Filter

Many applications for which one might want to employ a Kalman Filter are not linear systems. On
the contrary, they often consist of nonlinear dynamics, which render the Classical Kalman Filter
unsuitable for the task of estimation. However, as is common when dealing with nonlinear models,
the dynamics can be linearized around a point of interest and the estimation can be carried out
as before [24]. This is the essence of an Extended Kalman Filter. The EKF follows from the
KF by making some slight adjustments to the filter framework [28]. Below the discrete-time and
time-varying system presented in section 2.2.1 is recalled, newly adapted to be a nonlinear system:

xp =a(@p_1,ug) twr k=1,2,... (2.21)
zr=clxg) +n, k=0,1,... (2.22)

Here, a is the nonlinear process and c the nonlinear measurement model. The nonlinearity becomes
evident when considering that the output x; and measurement z; can no longer be represented
as a linear combination of the previous state xj_1, as well as the input ui. To be able to employ
the Classical Kalman Filtering framework derived in section 2.2.1, the nonlinear process and mea-
surement models are now linearized around the previous estimate ; , and input wj_; and the

current estimate &, respectively:

Oa
A1 = — 2.2
= (2.23)
Oc
Cp= — (2.24)
ox &=

Here the subscripts £ — 1 and k now refer to the estimate about which the models were linearized.
The prediction step then follows naturally as:

), = f(@_,u) (2.25)
Py = A P AL+ Qr (2.26)

Lastly, the update is computed:

U =z — Cap, (2.27)
Ky =P C/l (R+ CP_CJ )™ (2.28)
@y =@y + Ky (2:29)
P = (I - K,Cy) Py (2.30)

The brilliance of the EKF lies in allowing the use of familiar methods with slight modifications.
Further, it is computationally cheaper than other methods such as the particle or point-mass filter,
which are also used for nonlinear problems [28]. On the downside however, we are left to deal
with the limitations of linearization. These include calculating jacobians, linearization errors and
difficulty to tune, all of which add to the complexity and inaccuracy of the filter [24].
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2.2.3 The Unscented Kalman Filter

To address the shortcomings present in the EKF, the UKF employs a different approach. While
the UKF maintains the same two-step prediction and update procedure, the mechanisms involved
are slightly different. Instead of using linearization, the UKF uses sampling to bypass any non-
linearities while still guaranteeing a Gaussian distribution of the state. This is done by means of
applying the Unscented Transform to propagate carefully chosen sigma vectors (samples) through
the nonlinear process and measurement models [24, 30, 41]. The adapted estimation procedure is
described in the following.

Sigma Vector Sampling

As before, the challenge consists of estimating the nonlinear system presented in section 2.2.2.
The first step of the UKF consists of sampling a set of sigma vectors X; that fully describe the
estimated state at k — 1, ie. the a priori estimate of the state. There are different approaches on
how to choose these sigma vectors, a possible set is presented here from [30].

The first step consist of calculating the matrix S which is defined in eq. 2.31, where P,;tl is the
previous state covariance and () denotes the process noise covariance matrix:

S=\/Pf,+Qs (2.31)

In practice, a Cholesky Decomposition is commonly used for calculating S. Next, the column
vectors of S are used to calculate the set of 2n vectors {W,} as follows, where n is the dimension
of the state:

Wi itn = columns (j:\/2n . (P,j_l + Qk)> (2.32)

The sigma vectors are then computed, where :i'ktl denotes the previous state estimate:

Xy =2+ W (2.33)

It should be noted that this calculation is only valid for vector space state variables. When
employing quaternion representation for the orientation state however, :i:;ll + W corresponds to

qA,:;qui, where §r_1 is the orientation estimate from the prior timestep and ¢y, is a quaternion
from the set {W;}.

The Prediction

The prediction follows a similar schematic as in the KF and the EKF. However, since we are
dealing with the propagation of several state vectors, ie. the sigma vectors, some additional steps
are required. First, the sigma vectors X are passed through the process model A, resulting in the
propagated set of state vectors {J;}:

yi— A() 231

The computed set {);} is now used to calculate the a priori estimate 2, and covariance P :

&, =mean ({V;}) (2.35)
P_ = covariance ({);}) (2.36)
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The procedure involved to calculate the mean and covariance are dependent on the representations
used in the state vector. The definitions specific to the implementation used in this project are
given in subsections following the general update step description.

The Update

In the update step, the priorly computed set {);} is transformed by the measurement model C,
resulting in the set of measurement vectors {Z;}:

Z,=C(X) (2.37)

As before, the expected measurement 2, is the mean of the set {Z;} and the expected covariance
matrix P,, is its covariance:

z, =mean ({Z;}) (2.38)
P,. = covariance ({Z;}) (2.39)

Finally, the innovation g, and Kalman gain K} can be calculated and subsequently the a posteriori
estimate and state covariance are computed, where R is the measurement noise covariance matrix
and P, is the cross correlation matrix:

Yp = 2k — 2,

Ky =Py (P.. + R)™!
&) = &) + Kigy,

P = (I - K .C)P,

Mean Calculation

When our state variables are simple elements of a vector space, for example angular velocity, the
calculation of the set mean is straightforward. It follows as the barycentric mean, where 2n is the
number of vectors within the set {X;}:

2n
mean ({X;}) = % Z X; (2.44)

However, for state variables which are members of a homogenous Riemannian manifold, this com-
putation does not yield valid results [30]. Since this thesis aims at employing the UKF for orienta-
tion estimation purposes using a quaternion representation, a new method must be found. Kraft
[30] suggests using a gradient descent algorithm for averaging a set of quaternions, an identical
approach is adopted in this project.

Covariance Calculation

For a general set of 2n vectors {X;} and mean &, the set covariance follows as:

LS e (2.45)

i=1

Again however, dealing with orientation quaternions as state variables entails its difficulties. The
simple subtraction of the mean from the set element is no longer viable. Instead, [X; — Z] corre-
sponds to [gx,§~ 1], where § is the set mean and gy, a quaternion of the set {X;} [30].
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The cross correlation matrix calculation follows similarly. In this application, it is solely used to
calculate the cross correlation between the sets VW, and Z;:

1,
=5, Willzi — 21" (2.46)

i=1

PIZ

Here W, corresponds to [V; — @] in the case of vector space state variables or [gy,d; ~'] for
quaternion state variables.

The main benefits proposed by the UKF are its ability to eliminate linearization from the estimation
process, which in turn also alleviates the need for jacobian calculation. Not only does this offer
increased robustness against nonlinearities, it renders the implementation less complex and easier
to adapt to new state extensions. However, as we are propagating numerous sampling points, the
computational costs are slightly higher as compared to an EKF [9].

2.2.4 The Invariant Extended Kalman Filter

Recent developments in state estimation for robotics have brought forward a novel way of dealing
with the challenges of pose estimation. As an extension to the EKF, the INEKF is presented as
a new estimator that is based on invariant observer design theory [18, 11, 4, 5]. The inclusion of
knowledge on the geometric structure of both the involved dynamics and state space structure into
the approach, yield an estimator that improves on the trusted performance of the EKF |5, 18|. This
mention of the INEKF is included here solely for completeness, the INEKF is not expanded upon
or employed in this thesis. However, as it shows great promise for pose estimation applications
[18], the reader should be aware of its existence.

2.3 The Complementary Filter

While Kalman Filtering approaches offer many important benefits, making them very attractive
for pose estimation, their stochastic nature render them increasingly complex and computationally
heavy. When orientation estimation is considered independently, a simpler and remarkably com-
putationally inexpensive alternative can be found in the form of the Complementary Filter [31, 16].
The underlying principle of the Complementary Filter is to combine gyroscope measurements with
accelerometer readings. The gyroscope provides an increasingly accurate high-frequency response,
while the accelerometer readings are able to de-drift the estimate at lower frequencies [6, 34]. Pair-
ing these two complementary measurements through a sensor fusion framework then provides an
orientation estimate with increased accuracy, even at low sampling rates [31]. A schematic of this
process is shown in Fig. 2.5.

Gyroscope Accelerometer

Biased! Noisy!
OE( R e

Orientation Estimate

Figure 2.5: A basic Complementary Filter implementation using high- and low-pass filtering for
gyroscope and accelerometer readings respectively.
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The implementation used in this project follows the Complementary Filter proposed by Madgwick
[31], which uses a quaternion representation for orientation and relies on optimization for sensor
fusion. While an extension for the additional usage of a MARG sensor array exists, this project
focuses on the IMU centered implementation. The filter algorithm can be divided into three steps:
orientation estimation from angular rate, orientation estimation from acceleration and filter fusion.
In the following, these three steps are explained.

Orientation from Angular Rate

This first step consists of calculating the estimated orientation quaternion %qw,k at the timestep
k from the estimate at the prior timestep {fvtjest,k_l and the current gyroscope readings Pwy.
Here the sub- and superscripts ‘1/3[/ refer to the body frame and world frame respectively, ie. Pw is
measured in the body frame B and £,q rotates a vector from body frame B to world frame W.
Further, the subscript ,, indicates that the orientation estimation is the result of the angular rate

step only, while .4 refers to it being the result from the combined steps.

First, the quaternion derrivative .4, 1, which quantifies the rate of change of the world frame
relative to the sensor frame, is calculated. The orientation estimation then follows from numerical
integration, where At denotes the sampling period:

. 1.
ﬁ/qw,k: = iquest,k—l & Bwk (247)
ﬁ/(jw,k: = ﬁ/dest,kfl + qu'chAt (248)

Orientation from Acceleration

This step aims at calculating the orientation {?VQA,k by comparing the known gravity direction
W& with the direction measured by the accelerometer 2§;. Here the subscript A indicates that
the orientation estimation is calculated solely in this step and not the combined steps. However,
this simple idea would result in an infinite amount of solutions, since the true orientation rotated
around an axis parallel to the known direction is again a solution. As we are employing a quaternion
representation of the orientation, which requires a complete solution, this redudancy is problematic.
Here Madgwick proposes the solution in form of an optimization problem, seeking to minimize
the error between the gravity vector calculated from the accelerometer reading §; using the
preliminary orientation estimate £,g; and the known gravity direction "'g. The problem can be
formulated as follows:

g S (k'8 Psr) (2.49)
FOvae, Ve %8) =i @ Ve Vit — 8 (2.50)

Wik = [qw @ €= ) (2.51)

Ve =10g. gy 9:] (2.52)

Bg =105, sy s.] (2.53)

(2.54)

Madgwick employs a gradient descent algorithm for optimization and assumes convergence in one
step in order to keep the computational costs low. While ﬁ,ch,k can be calculated explicitly, this
is neglected here as it is not needed for the further steps of the algorithm. The result of this step is
the objective function gradient V f ({?V(jk, Weg Bg,.) which is calculated according to eq. 2.55, where
J (& Gk, " ) is the Jacobian of the objective function:

ViGa, Ve Pse) =T Gan, V) F(han, e, Par) (2.55)
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Filter Fusion

The last step of the algorithm is concerned with fusing the two prior orientation estimates ﬁ/qw,k
and {?V(jA,k to calculate the improved estimate {?V(}est_,k. The algorithm proposed by Madgwick
greatly simplifies this step in favor of efficiency. First the direction of the estimated orientation
derivative error %qleyk is calculated using the computed objective function gradient Vjf. The
combined estimated orientation derivative ﬁ,q'est’k is then the derivative calculated in the first step
@qw,k with the error compensated by subtracting the scaled derivative error {fvésﬁk. Here (3 is the
gain parameter used for scaling the error, which takes the magnitude of the gyroscope measurement
error wg into consideration. The estimated orientation ﬁ,q}st’k then follows from integration.

. vf
B X

ek = T (2.56)

v V£l
Wiestk = Wiwk — Bivdek (2.57)
EVqust,k = g/(jest,kfl + gv(jest,kAt (258)

1. o 3.

B=1354®[0ws 0 sl = \/;wﬁ (2.59)

The Complementary Filter succeeds at offering a simple, lightweight and efficient algorithm for
orientation estimation. It can easily be integrated into the estimation framework and, supplied
with IMU measurements, provides an accurate orientation estimate. Its simplicity however also
prevents any extensions to the variables being estimated. While variables such as sensors biases
can be readily estimated by Kalman Filtering approaches, this is not possible when employing
a Complementary Filter. Further, this implementation offers only one parameter to tune to the
specific application, significantly less than when using a Kalman Filter.
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Methods

In the following chapter, the implemented state estimation approaches are discussed. First, the
choice of sensors is explained with a specific focus on simplicity and robustness. Further, the
concept of Two Stage Estimation which this project relies on is introduced and its mechanism and
benefits are elucidated. Expanding on this, the chosen implementations of orientation filters, as
well as position and velocity filters are discussed. Lastly, it is explained how the performance of
the different state estimation approaches is tested and by which metrics it is delineated.

3.1 Sensory Devices

While many different sensors have been shown to valuable to state estimation problems, this thesis
focuses on the use of proprioceptive sensors only. More specifically, the following two sensors are
used:

1. IMU: The IMU provides measurements of the robot’s acceleration and angular velocity to
the estimator. This is done by means of an accelerometer and gyroscope respectively. This
information is essential to estimating the robots pose [29].

2. Joint Encoders: The joint encoders provide the estimator with angular position measurements
of all joints. By means of kinematics, the position of any rigid link can be calculated. This is
especially useful to estimate the position of the robot’s feet, yielding a valuable measurement
for pose estimation purposes [17].

The reasoning for this approach is twofold. Firstly, the use of a minimalistic, proprioceptive sen-
sor setup offers a high level of simplicity and versatility of the estimation approach. The IMU
is self-contained and its measurements provide readily available data that can be easily employed
for estimation purposes. In contrast, visual sensor or laser based approaches (such as lidar) often
entail expensive computational costs and are thus not applicable with the same breadth as inertial
sensor approaches [1]. Unfortunately, inertial sensors do suffer more significantly from both sensor
noise and position drift over time, mainly due to the second-order integration required for position
estimation, than their visual or laser based counterparts [1]. However, as has been shown in prior
works, fusing information from kinematics and inertial sensors by means of a Kalman Filter based
approach offers very promising results in terms of accuracy of the estimation and simplicity of its
deployment [6, 10, 9, 16, 18].

Secondly, proprioceptive sensors offer a robust set of measurements, largely irrespective of their
environment. Exteroceptive sensors, as the name implies, rely heavily on external information [17]
and are thus very sensitive to their environment. Visual approaches are strongly influenced by
lighting and imaging conditions, laser and sonar sensors are conditional to the surrounding surface
material and orientation and GPS/GNSS approaches are dependent on the ability to receive un-
corrupted satellite signal [1]. As proprioceptive sensors make measurements of internal values [17],

14



Chapter 3. Methods 15

they do not suffer from the same limitations. However it should be recalled that, as is discussed in
section 2.1, legged robots in particular are susceptible to noisy internal sensor measurements due
to inevitable intermittent ground contact brought on by the nature of their locomotion.

It should be noted that the robot to which the estimation approaches in this thesis are tailored also
employs foot pressure sensors. These sensors provide foot contact measurements which are also
used in the estimation approaches. However, as the evaluation is done in simulation and future
work aims at replacing these sensors by means of contact estimation techniques [21, 7, 12], they
are not further considered.

3.2 Two Stage Estimation

While the Classical Kalman Filter cannot be applied to systems with a nonlinear process or obser-
vation model due to the underlying assumption of a Gaussian distribution being violated, it can
still be used to estimate any linear part of the state with great accuracy. With this in mind, an
estimator that combines the accuracy and simplicity of the Classical Kalman Filter with a nonlin-
ear filter equipped to handle the nonlinear estimation would provide a very simple and adaptable
method of state estimation. Legged robotics presents an ideal situation to apply this logic. While
orientation estimation is a highly non-linear process, position and velocity is well suited to be esti-
mated using linear models, as the underlying dynamics are linear. Such an approach is employed
with great success in prior work by Bledt et al. [6], where a Two Stage Estimator (TS) is developed
for the MIT Cheetah 3 quadruped robot and by Flayols et al. [16], where the same is done for
the HRP-2 humanoid robot [26]. Fig. 3.1 shows the structural differences between pose estimation
using a EKF framework versus using a Two Stage Estimation framework.

EKF Two Stage Estimator
— Orientation
Orientation, Position & l
Velocity

Position & Velocity

l l

Pose Estimate > Pose Estimate

Figure 3.1: The EKF (left) estimates the entire pose within the same algorithm. The TS (right)
on the other hand estimates the orientation separately from the position and velocity.

By decoupling the orientation estimation from the linear estimation of the velocity and position,
two primary benefits become evident.

Firstly, as the position and velocity follow linear dynamics, the accuracy and simplicity the Clas-
sical Kalman Filter provides for such scenarios can be readily exploited. Not only is the Classical
Kalman Filter the optimal estimator for linear problems [37], the difficulty of implementation is
also reduced. There is no longer the need for including these linear states in the linearization
framework, greatly simplifying the task at hand.

Secondly, the two stage estimation approach provides an excellent platform for comparing and
employing different non-linear and linear filtering approaches. This benefit is illustrated by Floyals
et al. [16], where two different approaches to pose estimation are compared. Building on the basis
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of the linear estimation filter, much any non-linear filter can be implemented to provide the needed
orientation estimates. As this thesis shows, especially applications in research can benefit from
this modularity, making the benchmarking of different approaches very simple.

Building on this approach of Two Stage Estimation, section 3.3 elaborates on the specific orientation
filter implementations employed in this thesis, while section 3.4 focuses on the position and velocity
filters. To avoid any redundancy, only the specific implementation is discussed, as the theory of
the respective filters is explained priorly in chapter 2.

3.3 The Orientation Filter

3.3.1 The Complementary Filter

Both Bledt et al. [6] and Flayols et al. [16] employ adaptations of the Complementary Filter based
approach in their estimation techniques. Primary arguments for using the CF for orientation esti-
mation in this project is its undeniable simplicity in implementation and the amount of relevant
information readily available from prior works.

The CF implemented for this thesis is based on the IMU filter originally proposed by Madgwick
[31] and explained in section 2.3. The provided algorithm is adapted to function within the y-up
axis convention used for this project. This is done by accordingly setting the predefined reference
direction of the gravity field in the earth’s frame £d = [0010]. This further entails changes in the
objective function f(34, Eq, 93) and its Jacobian.

Further, the beta parameter is tuned to correspond with the inertial sensor parameters assumed
in the testing simulation. More specifically, it is set to 1.09254 x 10~3 which is calculated based on
the eq. 2.59 proposed by Madgwick. Here wg is set to the assumed gyroscope white noise strength
of 8.920572 x 1075 rad/s2 /i, discretized at an IMU sampling frequency of 200 Hz (a more in depth
discussion of the noise generation is done in section 4.1.1).

Due to its prior employment in very similar applications, ie. orientation estimation for legged
robots [6, 16|, the CF is assumed in this project as a baseline performance benchmark which the
following approaches seek to improve upon.

3.3.2 The Unscented Kalman Filter

The UKF employed in this project is derived from the implementation introduced by Kraft [30],
which is explained in section 2.2.3 and uses a quaternion representation of orientation. This filtering
approach is chosen to explore simpler alternatives to the EKF approach employed in state-of-the-art
state estimation implementations [10]. Especially the sampling and propagating of sigma vectors of-
fers an interesting alternative to linearization commonly applied in non-linear estimation scenarios.

For this thesis, two different versions of the UKF proposed by Kraft are implemented. This dis-
tinction is done to determine if the angular velocity must necessarily be estimated alongside the
orientation or if the measurements provided by the IMU suffice.

The first version, labelled UKF, focuses solely on orientation estimation. While Kraft includes the
angular velocity w = [w, wy w;| into the filter state, this is fully neglected in the first implementa-
tion, producing the following state vector x, where ¢ is the orientation quaternion ¢ = g ¢z ¢y ¢-]:

© = [q] (3.1)

This reduces the DOF of the state to three, meaning less sigma vectors have to be calculated and
propagated through the algorithm. It further eliminates the need for process and measurement
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models that deal with two distinct physical entities, ie. the angular velocity w and the orientation
quaternion g. This yields a simpler filtering algorithm which is only concerned with estimating the
robots orientation.

The second version, labelled UKF AV, implements the estimation algorithm for the state including
the angular velocity, as is proposed by Kraft. The state vector x now becomes:

x = [q w] (32)

As mentioned before, a primary challenge now is the necessity of dealing with both orientation
quaternions and angular velocity vectors. However, the extensions explained in section 2.2.3 deal
with this issue efficiently.

3.4 The Position and Velocity Filter

3.4.1 The Classical Kalman Filter

The Two Stage Estimation approach allows for employing a Classical Kalman Filter for position
and velocity estimation. The KF implemented in this project is based on the filter presented by
Bledt et al. [6], which in turn functions similarly as the linear section of the filter developed
by Bloesch et al. [10]. Both approaches suggest augmentations to the basic KF framework by
including kinematic calculations of the robot’s relative foot positions. As is emphasized by Bloesch
et al., this efficiently increases the estimation accuracy. Bledt et al. go one step further and also
include relative foot velocity calculations aimed at further increasing estimation performance. A
schematic of the Kalman Filter approach including these augmentations is shown in Fig. 3.2.

_____ x = (position, velocity, orientation,
foot contact position..)

[ State x @ k-1

T

. joint encoders + forward kinematics +
State Prediction State Z et angular velocity

From propagation equations From sensor readings and
propag q forward kinematics [

« Relative foot position
« Relative foot velocity

Kalman Filter
equations ¢

v

[ State x @ k ]

Used in update step to de-drift estimate

Figure 3.2: The basic KF can be extended by including relative foot position and relative foot
velocity into the measurement model as proposed by Bloesch et al. [10] and Bledt et al. [6]. Here
k is the discrete timestep.

The implementations developed in this project adopt these extensions, the details of which are
provided in the following sections.

Including Relative Foot Position

Using a kinematic model of the robot, its relative foot positions can be calculated from the joint
encoder readings. This enables for an additional measurement to be used in the update step, in-
creasing the accuracy of the estimation [10]. An essential point of this extension is the inclusion of
the foot contact positions into the filter state, such that they can be estimated alongside the pose
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and are readily available to calculate the additional residual. The last element of this approach
then follows naturally: while the foot contact positions are being estimated under the assumption
of them staying constant, the relative foot position measurements are clearly not constant in swing
phase. Bloesch et al. solve this by simply increasing the associated covariance parameter of the
foot to a large value when it is in swing phase, which leads to the update from forward kinematics
being skipped by the KF. When the foot regains contact with the ground, the covariance parameter
is reset to a small value and the forward kinematics update is then used.

The state vector « then follows as, where p, is the contact position of foot ¢ and M is the number
of legs:

Ty = [Py Vi Py - Pyl (3.3)

The approach leads to the following prediction equations for the a priori contact positions estimate
D; . of foot i € (1,..., M) at timestep k:

Pig =Dy (3.4)

The associated innovation vector y; j is then calculated, where the subscript , ; denotes its calcu-
lation from the position of foot i:

Pipr = 8 — Cu(Bi), — ) (3.5)

Here 8, is the relative foot position measurement of foot ¢ in body frame as calculated from
kinematics. 7 is the a prior: body position estimate and thus (i);k — 17, ) is the estimated relative

foot position in the world frame. Cy is the estimated orientation which converts the estimated
relative foot position from world to body frame.

Including Relative Foot Velocity

Bledt et al. further develop this extension by adding a relative foot velocity measurement residual
based on the same logic used for the relative foot position. As the foot contact position is assumed
to stay constant, the foot velocity must be zero accordingly. This eliminates the need for including
the foot velocity into the filter state, as the assumed relative foot velocity is then equal to the
negative velocity of the body. The relative foot velocity measurement is then calculated using joint
encoder readings and angular velocity measurements. The corresponding innovation vector y; ;
is then computed as follows, where the subscript ; ; denotes its calculation from the velocity of
foot i:

ipk = Uik — Cu(~0) (3.6)

Similarly as before, @, is the relative foot velocity measurement of foot ¢ in body frame. ¥, is
the a priori body velocity estimate. As the foot velocity is assumed to be constant, the estimated
relative foot velocity in world frame follows as (—y, ), which is again converted to body frame.

Following these extension, two different position and velocity filters are implemented in the Two
Stage Estimator framework of this project: Firstly, the T'S which employs only the extension using
the relative foot position. Secondly, the TS FV which uses both extensions. This is done to
determine any performance differences between these two approaches.
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3.5 The Extended Kalman Filter

As the Two Stage Estimation approach is presented as a simpler alternative to the EKF framework
commonly used for pose estimation in robotics, their respective estimation performance is naturally
compared. The EKF employed for orientation, position and velocity estimation is based on the
state-of-the-art implementation by Bloesch et al. [10]. The general theory of the EKF is presented
in section 2.2.2. While it is used for generating results to compare to the filters developed here, the
implementation of the EKF was provided for this project and was done prior to its commencement.
The development or implementation of the EKF is not the subject of this thesis and is not further
expanded upon.

3.6 Performance Evaluation

Due to the modularity of the Two Stage Estimation approach, performance evaluation of the
different filters is split into two separate parts, namely:

1. Orientation Estimation

2. Position and Velocity Estimation

3.6.1 Orientation Estimation

In order to evaluate the orientation estimation performance, the estimates of the three different
orientation estimators are compared. Namely, the Complementary Filter (CF), Unscented Kalman
Filter (UKF), Unscented Kalman Filter with angular velocity estimation (UKF AV) and the Ex-
tended Kalman Filter (EKF) are tested. In this section of the evaluation, primarily the orientation
estimates are of interest, position and velocity estimates are not evaluated. Further, the ground
truth angular velocity as well as its computed estimate is evaluated for the case of the UKF AV
in order to determine the respective estimation performance and to determine any benefits of this
approach.

Testing Scenarios

To compare the orientation estimation performance of the different filters, the following two sce-
narios are tested. An overview is provided in Tab. 3.1.

1. Stance for 30s

2. Counterclockwise (CCW) rotation around the y-axis for 60s

3.6.2 Position and Velocity Estimation

The position and velocity estimation evaluation compares three different filters: The Extended
Kalman Filter (EKF), the Two Stage position and velocity estimator (TS), as well as the Two
Stage position and velocity estimator using relative foot velocity (TS FV). This section of the
evaluation is concerned with position and velocity estimation only, thus, as the TS and TS FV
can be combined with any suitable orientation filter, ground truth values are used as orientation
estimates provided to the estimator. The EKF on the other hand estimates the complete pose of
the robot in one combined step, making the use of ground truth orientation values unreasonable,
however they are provided as measurements in the update step.

Testing Scenarios

For evaluating the position and velocity estimation performance of the different filters, the following
five scenarios are tested. An overview is provided in Tab. 3.2.
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1. Stance for 30s

2. Forward motion in z for 60s with a velocity of 0.2 m/s

3. Forward motion in x for 60s with a velocity of 0.2 m/s

4. Sideways motion in x for 60s with a velocity of 0.2m/s

5. Variation in y for 30s: y =0.35m at t =0s, y =0.30m at t = 10s, y = 0.37m at t = 20s

3.6.3 Testing Overview

An overview of both testing sections is given in Tab. 3.1 and Tab. 3.2. Here "v'" signifies the
variables most significant for the evaluation of the respective testing scenario. Further, Fig 3.3
gives a visual overview of the different scenarios employed in simulation for estimation performance
testing.

Table 3.1: Orientation Testing Scenarios and Significant Variables

Angular Velocity
(for UKF AV)
Roll(R) | Pitch(P) | Yaw(Y) | wy | wy w,
1. Stance 30s - v v |V v
2. CCW Rotation 60s 0.1rad/s v v |V v

Scenario Description Duration  Speed Orientation

Table 3.2: Position and Velocity Testing Scenarios and Significant Variables

Scenario Description Duration  Speed Position Velocity
Pz | Dy | Pz | Uz | Uy | Uz

1. Stance 30s - v v

2. Forward in z 60s 0.2m/s v v

3. Forward in x 60s 02w/s | v v

4. Sideways in x 60s 0.2m/s | v v

5. Variation in y 30s - v v

3.6.4 Evaluation Metrics
Plots

A primary evaluation of the performance is done by means of plotting the estimated data for
position and velocity or orientation over time, alongside the ground truth data. This is done to
generate an overview of all estimator performances, as well as enabling comparisons between the
different approaches.

The locomotion scenarios 2., 3. and 4. within the position and velocity testing section are further
evaluated by means of plotting a trajectory map using the x and z position estimates and ground
truth values. This is done to generate a visual representation of the position estimation deviations
during motion.
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Stance Forward in z Sideways in x

CCW Rotation Forward in x Variation in y

Figure 3.3: An overview of the scenarios used for testing orientation, as well as position and velocity
estimation of the different filters.

Root-Mean-Square Error (RMSE)

To quantify the accuracy of the estimation, the root-mean-square error (RMSE) is calculated for
all estimated time series. The RMSE is computed as follows, where N is the total number of data
points collected, Z; is the estimated value and x; is the ground truth value [35]:

N
RMSE(z,2) = % Z(x — ;)2 (3.7)

The RMSE is chosen as it is an excellent error metric for numerical-predictions and suitable for
performance comparisons between different prediciton or estimation models [13, 35]. It should be
noted however, that comparisons of estimation performance between different variables, for example
velocity versus position estimation accuracy, can not be done by means of RMSE evaluation. This
is due to the scale dependency of the RMSE [35]. A perfect estimation would result in an RMSE
of zero, meaning no deviation of the estimation from the ground truth is present.

Maximum Absolute Error (MaAR)

The maximum absolute error (MaAR) computes the largest estimation error present in the data
set, representing a metric for quantifying the worst-case performance of the estimator. The MaAR
is calculated as follows, where again Z; is the estimated value and z; is the ground truth value:

MaAR(x,%) = max(|Z; — x;]) (3.8)

The MaAR is chosen to allow evaluation not only of the average performance of the estimator, but
to specifically quantify its most unfavorable estimations and thus its stability.
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Final Position Error Versus Final Distance Travelled

The final position error versus final distance travelled (FEFD) computes the final position estima-
tion error in percent of the final distance the ground truth robot travels in the desired direction
specified by the scenario. The FEFD is calculated as follows, where & and x are the final values
of the data set (z,#) with data points (x;, ;) ranging from ¢ = 1...N:

[N — 2N
):

FEFD(z, & %100 (3.9)

|z

The FEFD quantifies the final estimation error in terms of the robot’s objective of the corresponding
scenario, ie. the distance it travels in the desired direction. The FEFD thus provides a graspable
metric for the final position drift of the estimator. It should be noted that, due to the nature of
the FEFD, it is only used for evaluation of position estimation in forward and sideways motion
scenarios.
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Results

4.1 Simulation

In this section, the simulation environment in which the different estimators were tested is de-
scribed. Especially the models used for generating sensor noise and biases are elucidated. A brief
explanation of the environment and robot setup is also given.

4.1.1 Noise and Biases

Gyroscope and Accelerometer

To simulate and test the performance of the filters in hardware deployment, the challenges presented
by legged robot state estimation must be considered. This means that the inevitable innaccuracies
of the gyroscope and accelerometer must be included in the simulation by means of noise and bias
generation. These disturbances must then be added to the accelerometer and gyroscope values
provided to the estimation algorithm. The values used to generate these disturbances are based
on hardware parameters, rendering a physically relevant model.

The following equations describe the disturbance process to which the gyroscope and accelerometer
values adhere to [10]:

F=1F+bs+ws (4.1)
i)f = Wyy (4.2)
w=w+b,+w, (4.3)
b, = Wy, (4.4)

Here f and w are the actual accelerometer and gyroscope values, wy and w,, are additive white
Gaussian noise processes and by and b, are bias terms. The bias terms, as becomes evident from
the schematic, are modeled as Brownian motions and their corresponding derivatives are again de-
scribed by white Gaussian noise processes wyy and wy,, [10]. f and @ are the resulting disturbed
accelerometer and gyroscope values, which are provided to the state estimator in the simulation.

The noise values are defined by their respective standard deviation terms which are specific to the
IMU employed. This simulation assumes values from an InvenSense MPU9150 IMU [22], for which
the white noise strength o (accelerometer) and o, (gyroscope), as well as the bias diffusion values
ops (accelerometer) and oy, (gyroscope) are provided readily in [36] and displayed in Tab. 4.1.

In order to obtain the standard deviation needed to generate the respective noise and bias values,
these white noise strengths and bias diffusion values must first be discretized. This can be done by
taking the IMU sampling rate fryup = ﬁ into consideration. A value of fry;uy = 200 Hz is assumed

23
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for this simulation [27]. The discretization follows a simple procedure [40], where o. denotes the
continuous-time value (from Tab. 4.1) and o4 the corresponding disctetized value:

o4 =0c\ fimu = \;%f (4.5)

The generation of the discrete noise terms follows accordingly [2], where k is the discrete time step,
wq[k] is the discrete noise and oy is the discrete standard deviation:

wd[k] = g[k]dd (46)
glk] = 92 gy 9-] with g; ~N(0,1) forie€ (z,y,z) (4.7)

In the case of bias propagation, a subsequent additional integration step is required which, in
discrete time, follows accordingly [14]. Here bg[k] is the discrete bias, o3, q the discrete bias noise,
by[k — 1] the bias of the previous time step and At = 7 L_ the sampling time step:

IMU

balk] = balk — 1] + Atwglk] (4.8)

As becomes evident from eq. (4.5) and eq. (4.8), after discretization and after subsequent integra-
tion in the case of the biases, the units of the noise and bias terms are again conform with the
corresponding measurement values. The discretized parameters can be found in Tab. 4.2.

Joint Encoders

Several of the proposed estimation frameworks, namely the EKF, TS and TS FV, make use of
the relative foot position (and relative foot velocity in the case of the TS FV). These values are
computed by means of forward kinematics, using the measurements provided from joint encoders
employed in the robot [6, 10]. To again emulate relevant measurements in simulation, noise val-
ues must generated and added to the computed joint encoder readings. The following equations
describe the process from which the joint position and velocity values are obtained [10]:

a=oa+mn, (4.9)

B — bt (4.10)

Here @ and & are the actual joint position and velocity values respectively. The disturbances to
the actual values are modeled as discrete Gaussian noise n, and n [10]. Again, these noise values
are specified by the corresponding standard deviations o, and o4, which in turn depend on the
specific joint encoder used. The values assumed in the simulation can be found in Tab. 4.2 and
are adopted from the implementation of Bledt et al. [6].

The noise generation follows analogously as in eq. (4.6), only here the values are already assumed
to be discrete, thus the discretization becomes superfluous:

nalk] = glklog (4.11)
glk] = 9z gy 9-] with g; ~N(0,1) fori € (z,y,z2) (4.12)
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Table 4.1: MPU9150 IMU Parameters [36]

Metric Symbol Value Unit
Accelerometer

White noise strength o 224 x 1073 m/VHy
Bias Diffusion Obf 753 x 1075  m/s* Vi
Gyroscope

White noise strength oy, 1.84 x 101 °/nv/Hz
Bias Diffusion Obu 1.08 x 107>  rad/s> /iy

Table 4.2: Simulation Noise and Bias Parameters (Discrete Values) [36, 6]

Metric Symbol Value Unit
Accelerometer

Noise Std. Ofd 317 x 1072 m/e
Bias Noise Std. Obf.d 1.06 x 103 m/g3
Gyroscope

Noise Std. Ouw.d 1.26 x 1073 rad/y
Bias Noise Std. Obw,d 1.53 x 10~* rad/g?
Joint Encoders

Position Noise Std. o, 1x 1073 rad
Velocity Noise Std. oy 1x 1071 rad/g

4.1.2 Robot and Simulation Setup

To evaluate the performance of the estimation approaches, they are employed in simulation and
the scenarios detailed in section 3.6 are tested. The simulation environment is provided by the
Computational Robotics Lab (CRL) at ETHZ. The environment enables simulation of different
robots, of which the Unitree Al quadruped is used for this evaluation. Further, different gaits
can be selected within the environment. For the employed experiments, a trotting gait is selected.
The desired control inputs can be set in the simulation environment and the data required for
evaluation is also exported directly by an extension created in the process of this project.
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4.2 Experiment Results

In this section, the results from the test scenarios discussed in section 3.6 are presented. First,
the results obtained from the orientation experiments are given and subsequently the results from
position and velocity experiments are presented. The results consist of the evaluation metrics
presented in section 3.6.4.

4.2.1 Orientation Experiment Results

Tab. 4.3 shows the values of the RMSE and MaAR metrics as defined in section 3.6.4 for all filters
and both orientation experiment scenarios. Also, the RMSE of the angular velocity estimation
for the UKF AV approach is shown. The lowest error values per column, ie. the most accurate
estimation performance for the respective variable, are displayed in bold, allowing for a vertical
comparison between the different filters.

1. Stance

Fig. 4.1 compares the yaw estimate (blue) to the ground truth data (red) for all filters for the stance
scenario. The accuracy achieved in simulation becomes apparent, with all estimators achieving a
rounded RMSE value of 0.000 rad. Taking all orientation angles into consideration as displayed
in Tab. 4.3, similarly low RMSE and MaAR values can be determined. The EKF offers the best
performance throughout all metrics, however the values differ only minimally between the filters.
Further notable is the lack of performance difference between the UKF and the UKF AV, the only
deviation being the minimally higher MaAR (0.001 rad) in the roll angle estimation for the UKF
AV. In terms of angular velocity estimation, the UKF AV offers estimates with a RMSE below
0.004 rad/s for all axis.

2. CCW Rotation

Fig. 4.2 compares the yaw estimate (blue) to the ground truth data (red) for all filters for the CCW
rotation scenario. Differences in the estimation performance between the filters becomes evident
when the RMSE is considered. The RMSE for the CF (0.098rad) lies slightly below the RMSE
for both the UKF and the UKF AV (0.105rad), with a difference of only 0.007rad. The RMSE
for the EKF (0.427rad) is larger by a factor of ~ 4. When regarding the other orientation angles,
only minimal differences between the performance of the different filters can be determined, with
the maximum RMSE being 0.004rad for the CF. Notably, the MaAR for the yaw angle (6.276 -
6.283rad) in this scenario is considerably larger than the one in the stance scenario (0.001rad).
Again, no improvement in performance of the UKF AV over the UKF can be determined. Lastly,
the angular velocity estimation performance by the UKF AV is on par with the stance scenario
with RMSE values below 0.004 rad/s for all axis.
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Orientation Angular Velocity
R, P, Y Wz, Wy, W,
Filter / Metric RMSE [rad] ‘ MaAR |[rad] RMSE [rad/s]
CF 0.001  0.004 0.000 | 0.002 0.005 0.001
1. Stance UKF 0.001  0.001 0.000 | 0.002 0.002 0.001
UKF AV 0.001  0.001 0.000 | 0.003 0.002 0.001 || 0.002 0.001 0.004
EKF 0.000 0.000 0.000 | 0.001 0.001 0.001
CF 0.004 0.004 0.098 | 0.008 0.009 6.283
. UKF 0.001  0.001 0.105 | 0.001 0.002 6.282
2. Rotation
UKF AV 0.001  0.001 0.105 | 0.001 0.002 6.282 || 0.002 0.001 0.004
EKF 0.000 0.000 0.427 | 0.001 0.001 6.276

Table 4.3: Orientation Results: Error Results for all filters in both orientation experiment scenarios.
The RMSE and MaAR are displayed for the estimated roll, pitch and yaw angles. The RMSE is
displayed for the angular velocity estimated by the UKF AV. The lowest values per column are

displayed in bold.

CF: UKF AV:
RMSE: 0.000 [rad] RMSE: 0.000 [rad]
0.040
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Figure 4.1: 1. Stance: Comparison between estimated yaw angles (blue) and ground truth data
(red) in [rad] which are plotted over time in [s]. RMSE values are given for each filter, with all

showing results at an RMSE of 0.000 rad.



28 4.2. Experiment Results
CF: UKF AV:
RMSE: 0.098 [rad] RMSE: 0.105 [rad]
4.000 4.000
2.000 —— estimate 2.000
E 0.000 —— ground truth E 0.000
g -2.000 ” -2.000
-4.000 1 I | I L ) -4.000
0 10 20 30 40 50 60
t[s]
EKF: UKF:
RMSE: 0.427 [rad] RMSE: 0.105 [rad]
4.000 4.000
2.000 2.000
E 0.000 E 0.000
g -2.000 ” -2.000
-4.000 -4.000
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t[s] t[s]

Figure 4.2: 2. CCW Rotation: Comparison between estimated yaw angles (blue) and ground truth
data (red) in [rad] which are plotted over time in [s]. RMSE values are given for each filter, with
the lowest (green) being 0.098 rad for the CF.
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4.2.2 Position and Velocity Experiment Results

Tab. 4.4 and Tab. 4.5 show the error metrics for position and velocity estimation respectively,
resulting from the position and velocity experiment scenarios defined in section 3.6.2. For the x,
y and z position estimates, the RMSE and MaAR are provided. Further, for the scenarios 2., 3.
and 4., when the robot performs locomotion, the FEFD is provided for the direction of travel. In
the case of the velocity estimates v,, v, and v, both the RMSE and MaAR are shown. Again,
the lowest value per column is displayed in bold, highlighting the best filter performance for the
respective variable.

1. Stance

From Fig. 4.3 the y position and velocity estimation performance in stance can be determined. The
low RMSE values show the accuracy of all filters at this task. This sentiment is resonated when
considering the error metrics provided in Tab. 4.4 and Tab. 4.5. Further, the velocity estimation
RMSE is similarly low for all filters across all variables. Comparing the x and z position estima-
tion performance however, some distinction between the filters becomes apparent. For x position
estimation, the TS FV outperforms the EKF and the TS in terms of both RMSE (0.003m) and
MaAR (0.006 m). The inverse situation can be determined for the z position estimation perfor-
mance, where both the TS and the EKF provide similarly accurate estimates and outperform the
TS FV in terms of RMSE and MaAR.

2. Forward in z

In locomotion, the estimation performance of the filters show stronger distinctions as in stance
mode. From Fig. 4.4 this becomes apparent for the estimation of the z position and velocity.
While the EKF and the TS provide similarly accurate results in terms of the RMSE, the TS FV
performs decidedly worse in both tasks. Especially in the position estimation, the RMSE for the
TS FV (0.714m) is 0.122m higher than that of the T'S (0.592m). The additional metrics provided
in Tab. 4.4 follow the same narrative with both MaAR and FEFD being clearly higher in the case
of the TS FV. Notably, the FEFD for the TS FV is 9.87 % while that of the TS is only 8.4 %. This
distinction is further made visible in the trajectory comparison offered in Fig. 4.8 where a clear
difference in performance between the TS FV and the TS or EKF is apparent.

3. Forward in x

Under motion in x direction, the estimation performance of the filters is almost identical to the
previous scenario, only with the z and x variables switched. This comes as no surprise, as the two
scenarios performed are indistinguishable in nature with the sole difference being the change in
trajectory direction. This replicability is underlined by both the Fig. 4.5 and Fig. 4.8, as well as
by the data provided in Tab. 4.4 and Tab. 4.5.

4. Sideways in x

The ability of the estimators to function in sideways motion is shown in Fig. 4.6, where the x
position and velocity estimation performance of the filters is compared. A similar pattern to
scenario 2. becomes evident, with both the TS and EKF outperforming the TS FV for the x and
z variables. The values provided for the position estimation performance in Tab. 4.4 strengthen
this sentiment, with the TS FV exhibiting distinctly higher RMSE and MaAR values for the x
and z variables. Again, the FEFD comparison reflects this observation, resulting in 9.02 % for the
TS FV versus 6.27 % for the EKF. This difference is also apparent when evaluating the trajectory
plotted in Fig. 4.8 where the EKF and TS show almost identical performance while drift in the
TS FV estimation is evident.
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5. Variation in y

The results of the final scenario, which aims at comparing the filters y position and velocity
estimation performance when varying the body height of the robot, can be viewed in Fig. 4.7. The
plots showcase great accuracy across all estimators, which is further underlined by the low RMSE
values. This stability is resonated by the y variable position and velocity error metrics shown in
Tab. 4.4 and Tab. 4.5. The RMSE for y estimation peaks at 0.001 m for position (TS) and 0.006 m/s
for velocity (TS and TS FV).
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Position
Error Metrics for x, y, z
Filter / Metric RMSE [m] \ MaAR [m] \ FEFD [%]
TS 0.021  0.001 0.008 | 0.036 0.003 0.014
1. Stance TS FV 0.003 0.000 0.019 | 0.006 0.002  0.038
EKF 0.020  0.001 0.007 0.035 0.001 0.013
TS 0.032 0.000 0.592 | 0.052 0.003 1.025 8.40
2. Forward inz TS FV 0.062 0.000 0.714 | 0.097  0.002 1.242 9.87
EKF 0.034 0.000 0.593 | 0.054 0.001 1.032 8.41
TS 0.591 0.000 0.032 | 1.025 0.003 0.052 | 8.39
3. Forward inx TS FV 0.707 0.000 0.063 1.229  0.002  0.099 | 9.78
EKF 0.593 0.000 0.034 1.032 0.001 0.054 | 8.41
TS 0.101  0.001 0.017 0.172  0.003 0.024 6.61
4. Sideways in x TS FV 0.172 0.000 0.104 | 0.303 0.002 0.148 | 9.02
EKF 0.092 0.001  0.022 | 0.159 0.001 0.033 | 6.27
TS 0.033  0.001 0.009 | 0.054  0.003 0.017
5. Variationiny TS FV 0.009 0.000 0.020 | 0.016 0.002 0.044
EKF 0.034 0.000 0.008 0.057 0.002 0.015

Table 4.4: Position Results: Position error results for all filters in all position and velocity experi-
ment scenarios. The RMSE and MaAR are displayed for the estimated x, y and z positions. The
FEFD is given for all locomotion scenarios in the direction of travel. The lowest values per column
are displayed in bold.

Velocity
Error metrics for vy, vy, v,

Filter / Metric RMSE [m/s] \ MaAR [m/s]
TS 0.002 0.006  0.002 0.015  0.209  0.050
1. Stance TS FV 0.002 0.005  0.003 0.009 0.013 0.007
EKF 0.002 0.001 0.001 | 0.004 0.022  0.008
TS 0.001 0.004 0.017 0.016  0.208  0.048
2. Forward inz TS FV 0.003  0.004 0.024 0.010  0.013  0.032
EKF 0.001 0.001 0.018 | 0.008 0.021 0.024
TS 0.017 0.004 0.001 0.048  0.208 0.018
3. Forward in x TS FV 0.024  0.004 0.003 0.032 0.013 0.010
EKF 0.018 0.001 0.001 | 0.024 0.021 0.008
TS 0.003 0.004 0.002 0.014  0.209  0.048
4. Sideways in x TS FV 0.007  0.005 0.006 | 0.013 0.013 0.015
EKF 0.003 0.001 0.003 | 0.013 0.023 0.013
TS 0.002 0.006  0.002 0.015  0.209  0.050
5. Variationiny TS FV 0.002 0.006  0.003 0.008 0.013 0.008
EKF 0.003 0.003 0.001 | 0.007 0.093  0.012

Table 4.5: Velocity Results: Velocity error results for all filters and all position and velocity exper-
iment scenarios. The RMSE and MaAR are displayed for the estimated v,, v, and v, positions.
The lowest values per column are displayed in bold.
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Figure 4.3: 1. Stance: Comparison between estimated y position and velocity (blue) and ground
truth data (red) in [m| and [m/s] which are plotted over time [s]. RMSE values are given for each
filter, with the lowest highlighted in green.
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Figure 4.4: 2. Forward in z: Comparison between estimated z position and velocity (blue) and
ground truth data (red) in [m] and [m/s] which are plotted over time in [s]. RMSE values are given
for each filter, with the lowest highlighted in green.
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Figure 4.5: 3. Forward in x: Comparison between estimated x position and velocity (blue) and
ground truth data (red) in [m| and [m/s| which are plotted over time in [s]. RMSE values are given
for each filter, with the lowest highlighted in green.
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Figure 4.6: 4. Sideways in x: Comparison between estimated x position and velocity (blue) and
ground truth data (red) in [m| and [m/s| which are plotted over time in [s]. RMSE values are given
for each filter, with the lowest highlighted in green.
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Figure 4.7: 5. Variation in y: Comparison between estimated y position and velocity (blue) and
ground truth data (red) in [m] and [m/s] which are plotted over time in [s]. RMSE values are given
for each filter, with the lowest highlighted in green.
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and velocity filters.
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Discussion

Building on previous work, the objective of this thesis was to implement and evaluate different
approaches to state estimation for legged robots. The challenges lie in the inherent nonlinearity
of orientation estimation, as well as the corruption of measurements by sensor noise and biases,
as is expanded upon in section 2.1.3. The success of an estimation approach is dependent on its
ability to handle these tasks well and produce estimates with high accuracy. At the same time,
this thesis further aims at achieving preferably low complexity of implementation. Derived from
these criteria, the performance evaluation of a Two Stage Estimation approach combining an aug-
mented Classical Kalman Filter with different orientation filters was focused on. A state-of-the-art
Extended Kalman Filter approach was further employed to offer comparable values for the deter-
mined testing scenarios. The scenarios were tested in simulation using measurements disturbed by
noise and biases to provide realistic estimation results.

In the following, the performance of the implemented filters is discussed and compared based on
the results presented in the prior section. Further, the limitations of these results obtained in
simulation is reflected upon.

5.1 Orientation Estimation

Accuracy

The results that were achieved in section 4.2.1 by all four employed filters clearly show their ca-
pability of providing accurate orientation estimates. Across the board, all filters performed within
equal ranges of precision, except for yaw angle estimation where the CF and both UKFs showed
a slight edge over the EKF. However, it should be noted that, as Bloesch et al. [10] discuss in
their proposal of the EKF, the yaw angle remains unobservable and thus estimation drift in this
variable was to be expected.

While the CF was expected to perform worse than the other more sophisticated filters, this was the
case only on a minimal scale, with the CF even outperforming all other filters in yaw estimation
for the rotation scenario. Its approach of efficiently combining the gyroscope and accelerometer
readings with only one parameter offered for tuning performed impressively well. It should be
noted however, that the accurate calculation of this parameter was only possible due to the prior
knowledge of the gyroscope measurement error, which might not apply to all scenarios of employ-
ment in real hardware.

On the other hand, the EKF was expected to perform better than the other filters, due to its
incorporation of the sensor biases into the filter state [10]. This allows the EKF to attempt to
compensate any biases present in the intertial measurements, which could be expected to lead to
improved estimates as compared to other filters without bias compensation. This was not the case,
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suggesting either impressive performance by the other filters or the need for further parameter
tuning within the EKF implementation.

Proposed in this project as an alternative to the EKF to avoid cumbersome linearization, the UKF
showed very promising results in terms of accuracy. The scenarios tested showed no disadvantages
in its approach as compared to the two more common orientation estimation techniques. Further,
by comparing the results of the UKF and the UKF AV, it becomes clear that, at least in simu-
lation, the UKF AV shows no benefits over the UKF. This would indicate that the simpler UKF
implementation, neglecting angular velocity estimation, is sufficient to achieve accurate results. At
this point, real hardware experiments are needed to confirm these observations.

Implementation Complexity

In terms of complexity of implementation, the EKF is clearly the least preferable option. The
necessity of linearization for the approach is cumbersome and hampers the process of implemen-
tation and debugging. The CF on the other hand offers a compact solution which can easily
be adapted and implemented into most any orientation estimation scheme. The minimal differ-
ences in accuracy discussed above do not justify this large difference in implementation complexity.

However, as the CF is a very compact solution, it can hardly be extended to improve estimation
accuracy if needed. Here the EKF clearly offers more possibilities in terms of parameter tuning,
bias estimation and other augmentations to the estimation process. To bridge this gap between
high adaptability and relatively low complexity, the UKF was proposed as an alternative approach
to orientation estimation. While it is not as simple as the CF, the sampling and propagating of
selected sigma points produces a more sophisticated algorithm than the CF, with simultaneously
less complexity than the EKF. At the same time, the adaptability of a Kalman Filtering approach
is maintained, offering possible state extensions or parameter and sampling scheme tuning. These
benefits, along with the achieved accuracy, identify the UKF as the preferable orientation estima-
tion approach by the standards set and scenarios tested in this thesis.

5.2 Position and Velocity Estimation

Accuracy

The stance and height variation experiments tested in simulation give evidence of the high accu-
racy of all position and velocity filters for these tasks. Further, all filters provided rather smooth
estimates across all tested scenarios, with no apparent discontinuities visible in the resulting plots.
The locomotion experiments however helped determine some differences in precision. Surprisingly,
the TS FV performed considerably worse than the two other filters which use only the relative foot
position extensions to the update step. The drift accumulated in the position estimates for the TS
FV in forward and sideways motion indicate that the additional inclusion of relative foot velocity
into the model does not improve the estimate. On the contrary, it results in declined accuracy
for the scenarios tested in this project. This observation could imply that relative foot velocity
as calculated by forward kinematics is not a valuable additional measurement for pose estimation.
However, as a successful implementation exists [6], it rather implies the necessity of either tuning
or adapting the process noise model employed for this update component.

The almost identical results achieved for scenarios 2. and 3. provide evidence for the rotational
invariance of the filters employed. Changing the trajectory direction from z to x and initializing
the robot facing the x direction does not result in any changes in the estimation performance of
the filters, which is in accordance with noise and bias generation model used.

Lastly, the very similar performance of the TS and the EKF validates the TS as an viable alternative
to the EKF approach. While an improvement of the TS over the EKF was expected, since no
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linearization is involved in the estimates provided by the TS, this could not be ascertained in this
project.

Implementation Complexity

As mentioned throughout this thesis and discussed in section 3.2, the Two Stage Estimation ap-
proach allows for using a Classical Kalman Filter for estimating position and velocity. There is no
doubt that the implementation of the TS and TS FV is of lower complexity than that of an EKF.
A reduced state vector, as the orientation is estimated separately, no linearization and accordingly
no Jacobian calculation lead to an objectively more straightforward filter algorithm.

Further, the TS and TS FV can be paired with any orientation filter, due to the employed Two
Stage Estimation approach. This enables greater modularity, allowing for switching between dif-
ferent orientation filters either for purposes of research or to find a combination optimal to the
desired application. Such a differentiation is not possible when employing a filter that does not
separate these two distinct steps of the estimation process, as was the case for the EKF employed.

As was the case with the UKF, the higher complexity of the EKF is not justified by the comparison
between the estimation performance of the EKF and the TS. The TS provides estimates with
accuracy on par with the EKF in all scenarios, while being considerably simpler and modular.
These benefits emphasize the TS as the preferable choice for position and velocity estimation.

5.3 Limitations

The results, upon which the observations and statements made in this section are made, were
obtained in simulation. A realistic noise and bias model was employed that, based on hardware
parameters, aimed at generating relevant measurements. However, the results were never con-
firmed by real hardware testing, which does introduce some limitations into the evaluation process.

The terrain in the simulation environment was even and no foot slippage occurred. Further, apart
from the noise and biases, no external disturbances were inflicted upon the robot. Also, the speed
with which the locomotion tasks were performed was kept relatively low at 0.2m/s and no highly
dynamic gaits were tested.

For testing position and velocity estimation performance, ground truth orientation data was pro-
vided to the TS and TS FV, as well as in the measurement update of the EKF, as was mentioned
in section 3.6.2. This is surely not possible in hardware experiments and thus does not extensively
represent a realistic testing scenario. While the main objective of these experiments was definitely
the position and velocity estimation performance, using an orientation estimate from a nonlinear
filter instead of ground truth data is a logical next step to validate the results.

Nevertheless, these limitations certainly do not invalidate the observations made, as all filters were
tested within the same environment and the comparison between the filters was the main objective
of this thesis. Further, it would be unreasonable to commence hardware experiments without
previously testing the filters in simulation, both for reasons of safety and feasibility. However, the
drawbacks of testing in simulation reflected upon here do imply the advantage of further evaluation
of the filter performances in real hardware experiments. Also, introducing new testing scenarios to
evaluate estimation performance in highly dynamic gaits, as well as on uneven terrain would help
highlight potential flaws and refinement possibilities.
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Conclusion

This thesis aimed at determining a pose estimation approach for legged robots that combines high
accuracy and low implementation complexity. This was done by implementing, testing and eval-
uating the estimation performance of different filters within a Two Stage Estimation framework
and comparing them to a state-of-the-art EKF implementation. Through this work, the UKF
for orientation estimation and the TS for position and velocity estimation were identified as very
capable filters that best meet these criteria.

As was highlighted throughout this thesis, the UKF offers a simpler alternative for orientation
estimation on par with the performance of the EKF, while avoiding any linearization. Simultane-
ously, the advantages of using a Kalman Filter approach are maintained, with extensions to the
state and thus the estimation algorithm being straightforward to implement.

For position and velocity estimation, the TS, ie. the Classical Kalman Filter, was identified as
performing similarly accurate as the EKF while being simple to implement, lightweight and very
easy to adapt. As proposed by prior work, the foot contact position was included into the state to
improve estimation performance.

The work presented here can be directly extended to include comparisons to more recent estimation
approaches, such as the InNEKF, as well as improved implementations of the TS and UKF. These
improvements might include bias estimation and different sigma point sampling methods for the
UKF, as well as more extensive parameter tuning for the T'S. Lastly, as mentioned in chapter 5, real
hardware experiments could be done to further validate the identifications made in this project.
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