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Abstract
Machine learning (ML)-based Adaptive Bitrate (ABR) algo-
rithms often struggle to bridge the gap between simulation
and reality. Their strong performance in simulated or em-
ulated environments frequently fails to generalize to real-
world network conditions. Researchers have therefore begun
testing these algorithms over the Internet to incorporate real-
world feedback into their design. In this paper, we show that
since network conditions vary significantly across the globe,
testing in individual real-world environments can suffer from
the same generalization issues as lab-based testing. Existing
testing platforms suffer from (and might even be oblivious
to) this limitation because they cover a small geographical
region and rely on a narrow set of users affected by sur-
vivorship bias. As a result, their insights on an algorithm’s
performance generalize poorly to deployments in other en-
vironments across the Internet, hindering the widespread
adoption of ML-based ABR methods in practice.
To address this gap, we present ABR-Arena, a global

testing platform that enables researchers to evaluate the per-
formance of ABR algorithms across a diverse set of regions
around the globe. As a result of its worldwide coverage,
ABR-Arena can reveal the performance shortcomings of
several state-of-the-art ML-based approaches. It is extensible
and easy to deploy in additional locations. We will make
ABR-Arena available to the community to support the de-
velopment of new ML-based approaches and to facilitate
meaningful improvements to existing algorithms.

1 Introduction
Video streaming is the most prominent workload on the
Internet, accounting for over 65% of downstream traffic [10].
Consistently providing high Quality-of-Experience (QoE)
has therefore become critical for content providers seeking
to maintain user engagement [4]. To maximize a user’s QoE,
Adaptive Bitrate (ABR) algorithms that dynamically adjust
their sending behavior in response to changing network
conditions are commonly used in practice. This typically
involves selecting the appropriate bitrate to minimize delays
and stall time at the client, while maximizing video quality.
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Figure 1. ABR-Arena enables efficiently evaluating algo-
rithms in environments across the globe, allowing for more
representative performance benchmarks.

Optimizing video QoE over the Internet is a difficult prob-
lem for classical heuristics-based algorithms. They must con-
tend with a high-dimensional parameter space that spans
network conditions, user behavior, device capability, and
video characteristics, making it hard to model accurately.

This complexity creates an opportunity for ML-based
methods to shine. They can rapidly interpret vast amounts
of data, process large modeling spaces, and replace heuristic
tuning with learning from experience. On this premise, re-
search has increasingly shifted away from classical methods
towards using ML-based ABR algorithms [7–9, 12, 14, 18].

The need for real-world feedback. However, the adop-
tion of ML-based ABR schemes is hampered by a lack of real-
world feedback.While many algorithms have shown promise
when tested within their original training environment, they
often fail to performwhen deployed in practice [3, 6, 12]. One
possible approach could be to evaluate them in representative
synthetic environments through simulation or emulation.
However, in the context of networking, creating representa-
tive environments for testing or training is challenging: it
has been shown that the complex and heavy-tailed nature
of Internet traffic makes it particularly hard to replicate in a
controlled setting [1, 14, 15]. In other words, to evaluate the
true performance of an ML-based algorithm, we need to test
it in real-world scenarios. Therefore, the current strategy
for making these algorithms suitable for the Internet is to
directly train and evaluate them in situ, on the Internet itself.
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Projects like Puffer [14] currently lead the charge on this
front. Puffer is an open-source YouTube-like service that
streams live television to real users across the United States
using both classical and ML-based ABR algorithms. Several
state-of-the-artML-based approaches, in particular Fugu [14],
Maguro [8], and Unagi [8], have been shown to outperform
classical buffer-based or throughput-based ABR schemes [5,
11, 17] when trained using Puffer data and tested within
Puffer’s real-world environment. Fugu’s creators report con-
sistently outperforming all tested classical methods1 in terms
of video quality, and all but one in terms of stall time [14].
Similarly, Maguro’s creators even claim to achieve 78% lower
stall time than Fugu, as well as improved video quality [8].
To this date, Maguro and Unagi remain the best-performing
algorithms on the Puffer platform, showcasing the benefits
of using ML-based ABR algorithms over the Internet.

Despite its merits, Puffer has threemain limitations hinder-
ing its results from generalizing to deployments in practice.

1. Lack of regional diversity. The Puffer infrastructure
is deployed on a single server in Stanford and its view-
ership is restricted to the United States, which limits
the platform’s ability to capture a representative set
of global network conditions. As we will show in §3,
this lack of diversity can be a major hurdle when mea-
suring an ABR algorithm’s performance in practice.

2. Survivorship bias. The Puffer data also suggests the
presence of survivorship bias in their users. For exam-
ple, the study’s proposed algorithm Fugu improved by
roughly 50% in terms of stall ratio when comparing
February of 2025 to its initial performance in Febru-
ary of 2019 without any retraining. While the study
initially attracted a diverse set of users at its launch,
Fugu’s performance improvement over time indicates
that users experiencing higher QoE are more likely to
continue using the platform, hence biasing the results.

3. Hard to deploy. Finally, since Puffer is designed to be
highly available and production-grade, in the author’s
own words [16], it is non-trivial to build and deploy. It
is therefore cumbersome to replicate from scratch in
multiple regions to gather more diverse data.

These limitations can leave researchers oblivious to their
algorithm’s performance in real-world environments outside
of Puffer. Moreover, since Puffer is often used as the de facto
state-of-the-art data collection and testing platform for ABR
algorithms, its limitations also risk misguiding the designs of
future ML-based algorithms via performance feedback that
might be too specific to its narrow context and coverage.

Our Approach. To address this gap in algorithm evalua-
tion, as well as the shortcomings in prior work, we propose
ABR-Arena, a Python-based testing infrastructure for the

1Fugu outperforms BBA [5], MPC-HM and RobustMPC-HM [17] in terms
of video quality and all but RobustMPC-HM in terms of stall time.

efficient evaluation and comparison of ABR algorithm per-
formance across diverse real-world environments (fig. 1).
By containerizing streaming servers and deploying them to
cloud instances worldwide, we design ABR-Arena to be easy
to use and to extend to new locations. Wemitigate the impact
of survivorship bias by not relying on returning users, but
rather stream to random users sourced via Amazon Mechan-
ical Turk (MTurk), a popular crowdsourcing marketplace.

In this paper, we use ABR-Arena to evaluate state-of-the-
art ML-based ABR algorithms in four diverse regions. We
demonstrate that algorithms trained on Puffer’s data might
generalize poorly to other real-world environments, in some
cases even losing their advantage over classical schemes.

To summarize, we make the following key contributions:
1. We propose ABR-Arena, an infrastructure for effi-

ciently evaluating multiple ABR algorithms across di-
verse environments around the globe.

2. We address the shortcomings of previous work by de-
ploying our streaming servers in multiple continents
and streaming to real users globally, ensuring coverage
of a large diversity of network conditions – similarly
to what Pantheon did for congestion control (CC) [15].
To avoid the presence of survivorship bias, we stream
to QoE-insensitive users sourced via MTurk.

3. We demonstrate the effectiveness of our approach by
evaluating the performance of three state-of-the-art
ML-based ABR algorithms across four real-world en-
vironments in Europe, the Americas, and Asia.

4. We show that an algorithm’s performance in a single
environment – especially its training environment –
can vary greatly from its results in other contexts, in
some cases performing worse than non-ML methods.

We plan to make ABR-Arena available to researchers
around the world to aid the development of ML-based ABR
algorithms and their adoption in practice by providing more
diverse real-world feedback on their performance.

2 System Design
WedesignABR-Arena to address three key challenges (fig. 2):
(i) providing a higher diversity of real-world testing envi-
ronments, (ii) mitigating the presence of survivorship bias,
and (iii) ensuring ease of deployment and extensibility to
additional locations and ABR algorithms.

Backbone. ABR-Arena consists of four key components:
a Python interface, a deployable streaming server, a deploy-
ment and monitoring pipeline, as well as a QoE data collec-
tion and evaluation pipeline (fig. 2). In our streaming server
implementation, we extend the infrastructure made avail-
able by Puffer and use their pre-embedded video sources. To
make testing via crowdsourced users straightforward, we
extend streaming support to all major browsers and prevent
browser-based background throttling. By randomly assign-
ing an algorithm to each streaming session, we maintain
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Puffer’s randomized controlled trial property. For deploy-
ment, we containerize our streaming server and push it to
Docker Hub. We build our deployment and monitoring, as
well as our data collection and evaluation pipelines in Python,
using the netUnicorn library and services [2]. This setup al-
lows us to simultaneously deploy our servers on multiple
cloud instances across the globe andmonitor the experiments
on a rolling basis, using rsync to continuously transfer QoE
measurement data to our local machine for evaluation.

Regional diversity. We want to use ABR-Arena to test
ABR algorithms in a variety of real-world environments. To
this end, for the preliminary evaluations presented in this
paper, we deployed our streaming servers to cloud instances
in Sao Paulo, Zurich, Mumbai, and Ohio. We chose this mix
as a good starting point that covers diverse geographical
locations. However, thanks to ABR-Arena’s extensibility, it
can easily be expanded to more locations globally as well.

Crowdsourcing an unbiased user base. Unlike Puffer,
which streams to a returning audience, we field random users
via Amazon’s MTurk service, a crowdsourcing marketplace
that provides access to a broad set of Internet users to com-
plete virtual tasks. As our users stem from a paid platform,
we mitigate the presence of survivorship bias in our results.
In other words, while results from Puffer indicate that users
with a good streaming experience tend to return more fre-
quently, narrowing the diversity of sessions and biasing the
results, our users are insensitive to QoE and are not affected
by the same mechanism. As this restricts us from capturing
additional statistics on user behaviour, we focus primarily on
measuring QoE performance metrics. By using MTurk, we
can also handpick the geographical location of our user base
for each experiment. Further, we ask users to provide addi-
tional information on how (wired, wifi, cellular) and where
(residential, work, university) their device is connected to the
Internet as metadata. In our preliminary results presented
here, we fielded 11,156 users from 93 countries. Overall, our
measurements cost us roughly 500 USD.

Ease of deployment and extensibility. We design ABR-
Arena to be light-weight and easily deployable. This allows
it to be extended to new locations globally and not fall into
the same generalization pitfalls Puffer has over the years.
A user can easily interact with the system by setting the
desired configurations, e.g., which ABRs to test, their weights
or variants, which CC algorithm to use, in which locations
to deploy the servers, which cloud providers to use, how
long to stream to each user, etc. Based on these inputs, ABR-
Arena deploys the desired streaming servers, while the user
can monitor the infrastructure and evaluate the results on
their local machine in real time. New testing locations can
be readily added to ABR-Arena via a template (often, a one-
time setup on the cloud provider’s platform is required), and
we maintain Puffer’s ability to host new ABR schemes.

Deployment pipeline

Desired config
(ABRs, model weights,
cc, locations, provider,

stream time, etc.)

QoE data collection pipeline

Cloud provider Crowdsourcing
platform

users

globally

servers

Evaluation
pipeline

Figure 2.With ABR-Arena, we provide access to more di-
verse testing environments for ABR algorithms by enabling
easy deployment to servers across the globe, as well as main-
taining extensibility to further locations and ABR schemes.

3 Preliminary Results
We demonstrate the effectiveness of ABR-Arena by evaluat-
ing the performance of Fugu,2 Maguro, and Unagi across four
real-world environments. Fugu combines ML-based through-
put prediction with an MPC controller to form a hybrid ABR
approach and was trained on Puffer data. Maguro and Unagi
are two RL-based algorithms. Both are similarly trained in
simulation using Puffer traces, Unagi using randomly cho-
sen traces, and Maguro using sampling intended to address
dataset skewness. As a non-ML baseline, we deploy BBA, a
simpler buffer-based ABR algorithm [5]. We use ABR-Arena
to deploy our streaming infrastructure to AWS instances
in Zurich, Ohio, Sao Paulo, and Mumbai, and collect QoE
measurements by streaming to users across the globe. Addi-
tionally, we compare our results to the performance these
algorithms achieve on Puffer. In our experiments, we collect
510 streaming hours across 11,156 users, each streaming for
2 minutes and 45 seconds on average, between February and
June of 2025. Given the uneven distribution of streaming
hours (302 hours in Zurich, 95 hours in Ohio, 93 hours in Sao
Paulo, 20 hours in Mumbai), we compute metrics per stream-
ing session and compare their averages per environment.

Performance metrics. To compare the performance of
an ABR algorithm, we evaluate the QoE it provides via two
majormetrics shown to drive a user’s engagement with video
content: the video quality and the buffering time [4, 11]. We
use SSIM3 (higher is better) to measure the perceived quality
of a video [13], and the stall ratio (lower is better), i.e., the
percentage of time spent stalling, to measure buffering time.

2We use Fugufeb, a Fugu variant trained on Puffer data from February 2019
and used in the experiments in the original paper [14].
3As in [14], we convert the standard SSIM metric to a decibel scale.
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Figure 3. The large variations in stall ratio (left – lower is better) and video quality (right – higher is better) across deployments
show that testing in a single environment does not allow for a representative evaluation of an ABR’s performance. In particular,
an algorithm’s performance in its training context — here Puffer — can be markedly different from its performance in practice.
We plot the mean and the bootstrapped 95% confidence intervals for each algorithm in each environment.

Variance across environments. The QoE performance
of all algorithms varies markedly across our environments,
both absolutely and relatively (fig. 3). This is especially pro-
nounced for the RL-based schemes, Maguro and Unagi, with
their variance in stall ratio across our environments being
roughly 10 times higher than Fugu’s. While the Sao Paulo en-
vironment proves the most challenging, regional proficiency
varies between algorithms. For instance, Maguro performs
worse in Ohio than Zurich, while Unagi shows the opposite
trend. Fugu, thanks to its hybrid design, is more robust to
environmental changes, but still not immune to them. In Sao
Paulo, Fugu’s stall ratio is 86.4% higher and its SSIM 0.14 dB
lower than in Ohio. Similarly, our non-ML baseline, BBA,
varies less than Maguro and Unagi in terms of stall ratio.

Training and deployment gap. To assess how algorithms
generalize beyond their training contexts, we compare their
performance in ABR-Arena against their performance on
Puffer. To this end, we analyzed 23,236 streaming hours of
Puffer data fromMarch 2025. Across the board, stall ratios are
worse in our environments compared to Puffer (fig. 3). As be-
fore, this gap is especially stark for both RL-based algorithms,
Maguro and Unagi, compared to Fugu, which is considerably
more resilient. Although both Maguro and Unagi outperform
Fugu on Puffer, in our experiments in ABR-Arena, their stall
ratios are significantly higher than Fugu’s – by 276.8% and
264.8%, respectively. The differences in SSIM between Puffer
and ABR-Arena were smaller, but still present.
When considering BBA, the results are even more sur-

prising. Despite coming last on Puffer, BBA’s stall reduction
outperforms both Maguro and Unagi in our environments,
equalling Fugu. While BBA’s SSIM is lower, it strikes a bet-
ter trade-off between stalling and quality than Maguro and
Unagi in challenging environments, whose stall ratios reach
> 3% in Sao Paulo. Only Fugu offers similarly robust per-
formance. These results suggest that, due to its limitations,
testing on Puffer does not necessarily reveal the sensitivity of
ML-based ABRs to Out-of-Distribution (OOD) environments.

4 Discussion
Overall, our results highlight both the value and necessity
of ABR-Arena: QoE performance varies significantly across
real-world environments, and comparisons with Puffer re-
veal how much ML-based ABR performance can diverge
between training and deployment. A reliable evaluation of
these algorithms can only be done by testing them across
diverse regions with varying network conditions.

However, achieving sufficient diversity during evaluation
remains a challenge. While ABR-Arena improves on pre-
vious work and, by its extensible design, allows it to grow
more diverse in the future, it has its limitations. Our current
deployments — limited to major cloud providers and a uni-
versity network — may not reflect production environments
of large streaming platforms. Our preliminary dataset is also
smaller than the Puffer dataset, despite covering more re-
gions. We plan to remedy this by continuing to capture more
results to further substantiate our findings. Finally, while
we measure the performance gap that can exist between
training and deployment, with some algorithms even losing
their edge over classical methods, we do not offer any solu-
tions on how to close it. ABR-Arena can perhaps aid here
as well, by helping collect more diverse training data from
different environments to learn algorithms that generalize to
deployments across the Internet. This remains future work.

5 Conclusion
In this work, we present ABR-Arena, a global testing plat-
form for evaluating (ML-based) ABR algorithms across a
diverse set of real-world environments. Using ABR-Arena,
we address and reveal the variance of an algorithm’s QoE
performance between its training environment and its de-
ployment, as well as across different geographical regions.
By designing our platform to be easy to use, to deploy, and
to extend, we hope to support researchers in testing, devel-
oping, and adopting new ML-based approaches that offer
meaningful improvements over existing schemes.
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