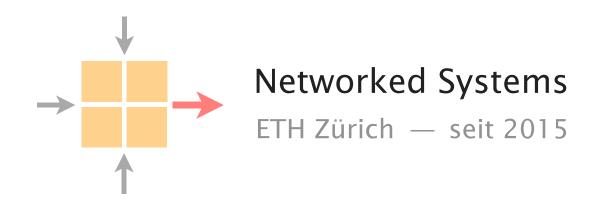
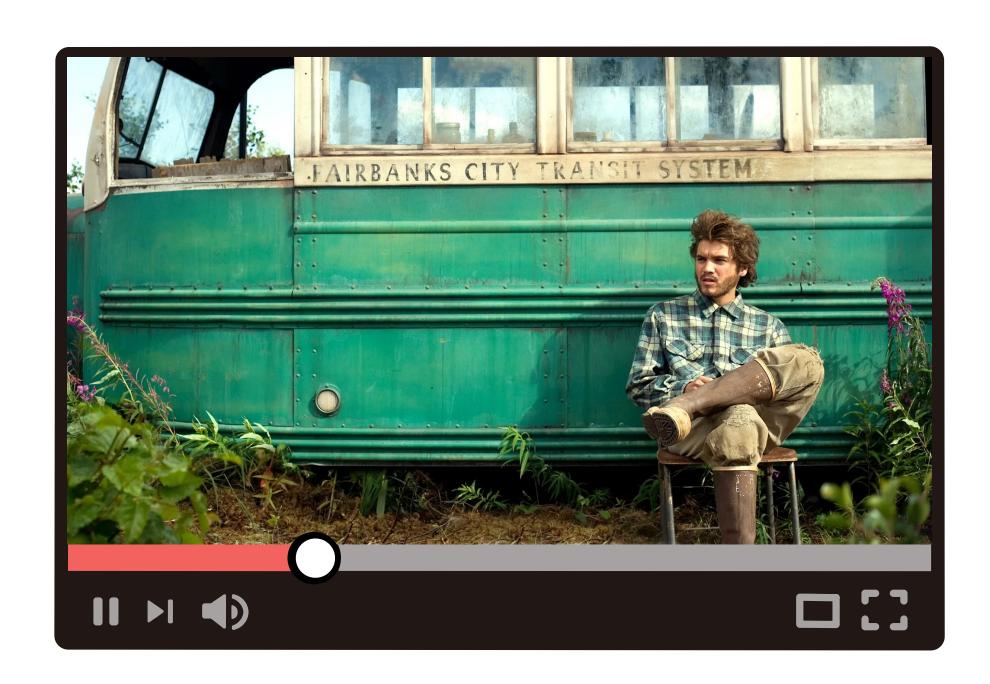
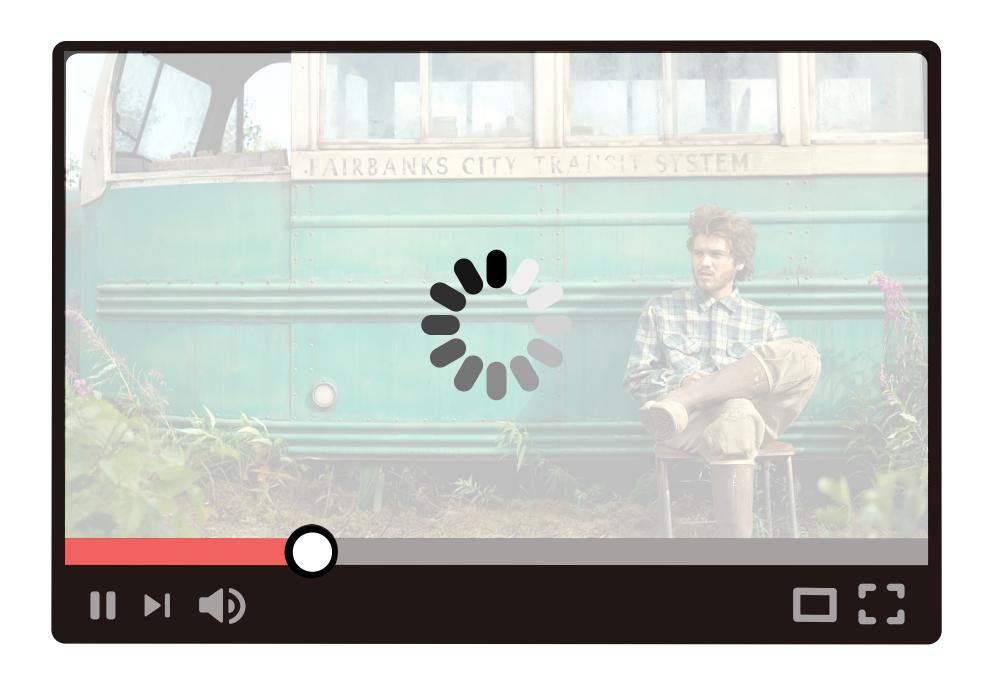
Into the Wild: Real-World Testing for ML-Based ABR

Benjamin Hoffman, Alexander Dietmüller, Ayush Mishra, Laurent Vanbever

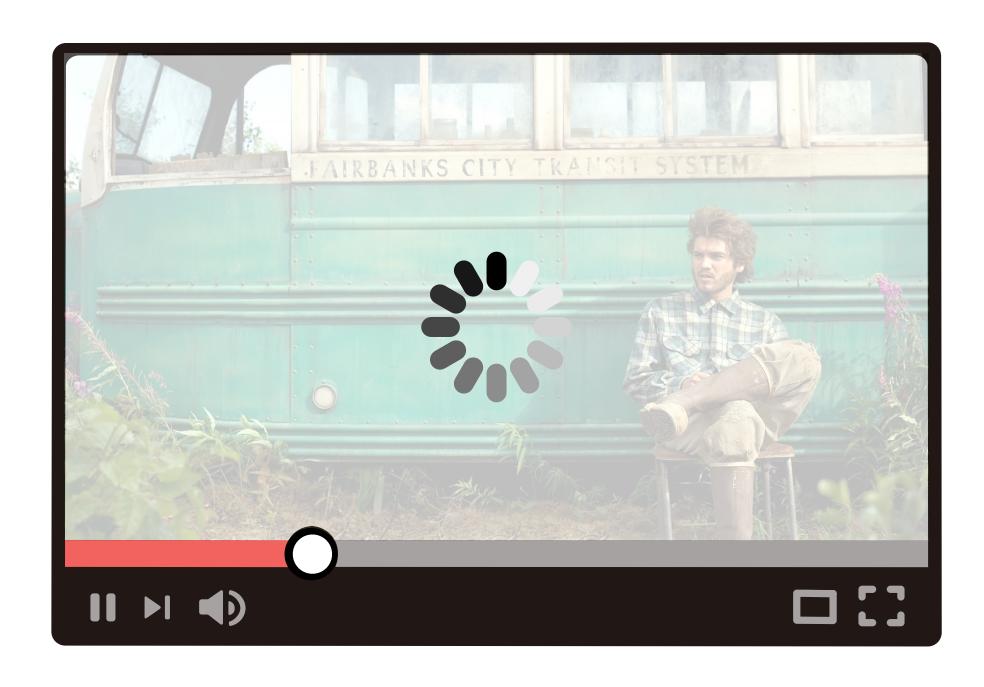
PACMI at SOSP 2025







Bad video streaming... sucks

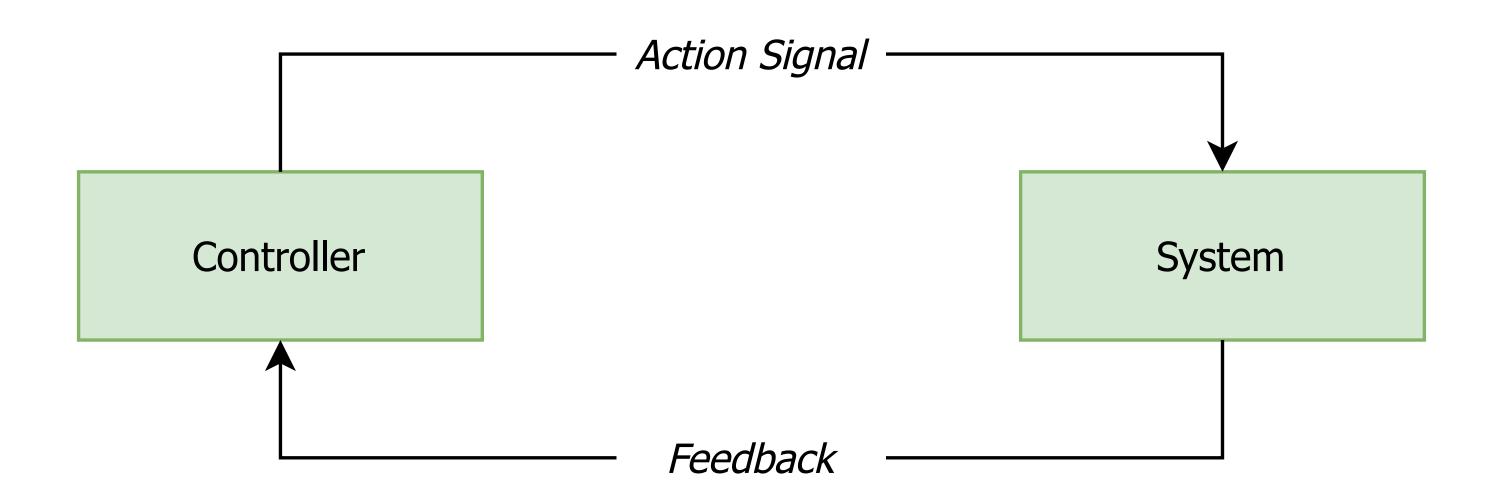


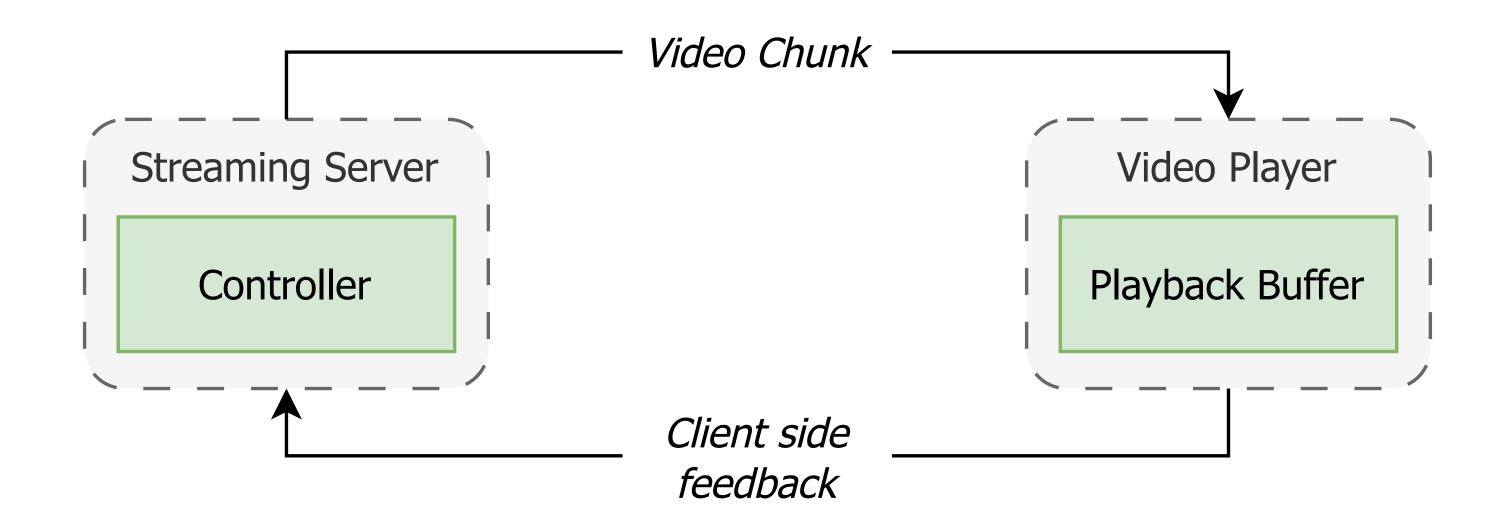
Rebuffering is detrimental to user experience¹

- Rebuffering is detrimental to user experience¹
- Streaming is the Internet's most prominent workload (> 65% of downstream traffic²)

- Rebuffering is detrimental to user experience¹
- Streaming is the Internet's most prominent workload (> 65% of downstream traffic²)
- Providing high Quality of Experience (QoE) to users is key!

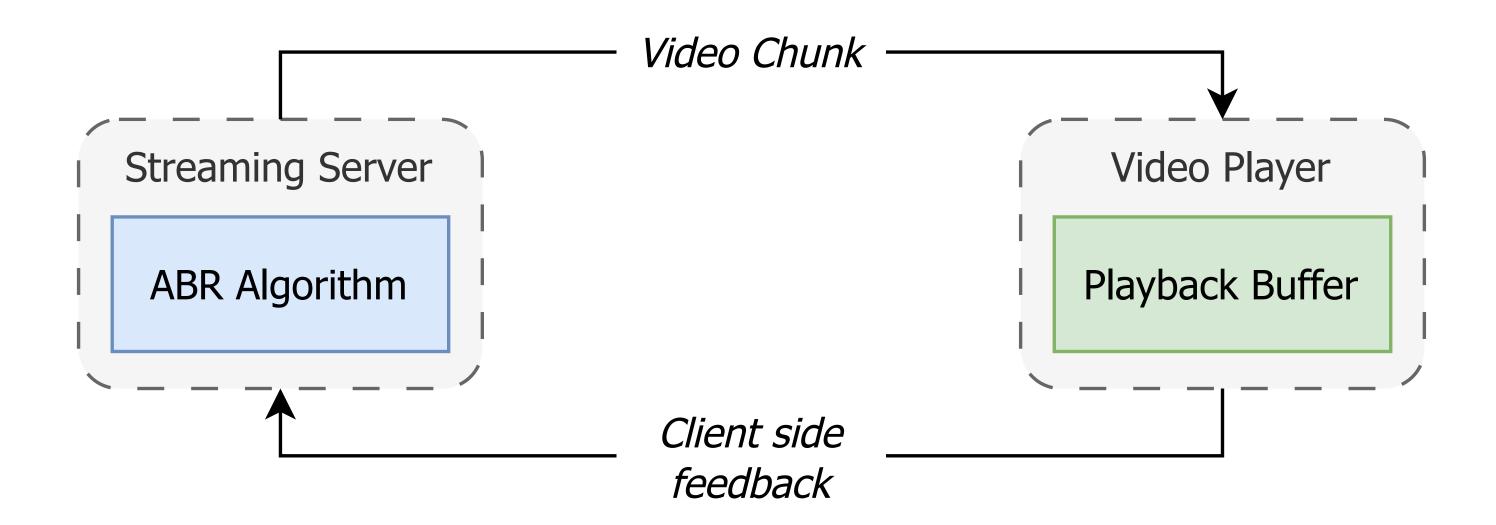
Control problem:





Control problem: adapt sending behavior based on changing conditions

Adaptive Bitrate (ABR) Algorithms



- Adaptive Bitrate (ABR) Algorithms
- Minimize stall time while maximizing video quality

- Adaptive Bitrate (ABR) Algorithms
- Minimize stall time while maximizing video quality
- Select appropriate bitrate after sensing or predicting network state

- Adaptive Bitrate (ABR) Algorithms
- Minimize stall time while maximizing video quality
- Select appropriate bitrate after sensing or predicting network state
- Traditionally via buffer- and rate-based control, or control theoretic approaches

Optimizing QoE over the Internet is challenging:

Optimizing QoE over the Internet is challenging:

high-dimensional modeling space

Optimizing QoE over the Internet is challenging:

Optimizing QoE over the Internet is challenging:

high-dimensional modeling space with increasing complexity over time

→ Research turns to learning-based methods that enable:

Optimizing QoE over the Internet is challenging:

- → Research turns to learning-based methods that enable:
- Handling high-dimensional modeling spaces

Optimizing QoE over the Internet is challenging:

- → Research turns to learning-based methods that enable:
- Handling high-dimensional modeling spaces and rapidly processing data

Optimizing QoE over the Internet is challenging:

- → Research turns to learning-based methods that enable:
- Handling high-dimensional modeling spaces and rapidly processing data
- Learning from past experience instead of tuning heuristically

And using learning-based methods shows promise!

CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction

Yi Sun®, Xiaoqi Yin†, Junchen Jiang†, Vyas Sekar† Fuyuan Lin®, Nanshu Wang®, Tao Liu®, Bruno Sinopoli† ® ICT/CAS, † CMU, © iQIYI {sunyi, linfuyuan, wangnanshu}@ict.ac.cn, yinxiaoqi522@gmail.com, junchenj@cs.cmu.edu, vsekar@andrew.cmu.edu, liutao@qiyi.com, brunos@ece.cmu.edu

ABSTRACT

Bitrate adaptation is critical to ensure good quality-ofexperience (QoE) for Internet video. Several efforts have argued that accurate throughput prediction can dramatically improve the efficiency of (1) *initial* bitrate selection to lower startup delay and offer high initial resolution and (2) midstream bitrate adaptation for high QoE. However, prior efforts did not systematically quantify real-world throughput predictability or develop good prediction algorithms. To bridge this gap, this paper makes three contributions. First, we analyze the throughput characteristics in a dataset with 20M+ sessions. We find: (a) Sessions sharing similar key features (e.g., ISP, region) present similar initial throughput values and dynamic patterns; (b) There is a natural "stateful" behavior in throughput variability within a given session. Second, building on these insights, we develop CS2P, a throughput prediction system which uses a data-driven ap-

Keywords

Internet Video; TCP; Throughput Prediction; Bitrate Adaptation; Dynamic Adaptive Streaming over HTTP (DASH)

1 Introduction

There has been a dramatic rise in the volume of HTTP-based adaptive video streaming traffic in recent years [1]. Delivering good application-level video quality-of-experience (QoE) entails new metrics such as low buffering or smooth bitrate delivery [5, 22]. To meet these new application-level QoE goals, video players need intelligent bitrate selection and adaptation algorithms [27, 30].

Recent work has shown that accurate throughput prediction can significantly improve the QoE for adaptive video streaming (e.g., [47, 48, 50]). Specifically, accurate prediction can help in two aspects:

• Initial bitrate selection: Throughput prediction can help

Neural Adaptive Video Streaming with Pensieve

Hongzi Mao, Ravi Netravali, Mohammad Alizadeh
MIT Computer Science and Artificial Intelligence Laboratory
{hongzi,ravinet,alizadeh}@mit.edu

ABSTRACT

Client-side video players employ adaptive bitrate (ABR) algorithms to optimize user quality of experience (QoE). Despite the abundance of recently proposed schemes, state-of-the-art ABR algorithms suffer from a key limitation: they use fixed control rules based on simplified or inaccurate models of the deployment environment. As a result, existing schemes inevitably fail to achieve optimal performance across a broad set of network conditions and QoE objectives.

We propose Pensieve, a system that generates ABR algorithms using reinforcement learning (RL). Pensieve trains a neural network model that selects bitrates for future video chunks based on observations collected by client video players. Pensieve does not rely on pre-programmed models or assumptions about the environment. Instead, it learns to make ABR decisions solely through observations of the resulting performance of past decisions. As a result, Pensieve automatically learns ABR algorithms that adapt to a wide range of environments and QoE metrics. We compare Pensieve to state-of-theart ABR algorithms using trace-driven and real world experiments spanning a wide variety of network conditions, QoE metrics, and video properties. In all considered scenarios, Pensieve outperforms the best state-of-the-art scheme, with improvements in average QoE of 12%–25%. Pensieve also generalizes well, outperforming existing schemes even on networks for which it was not explicitly trained.

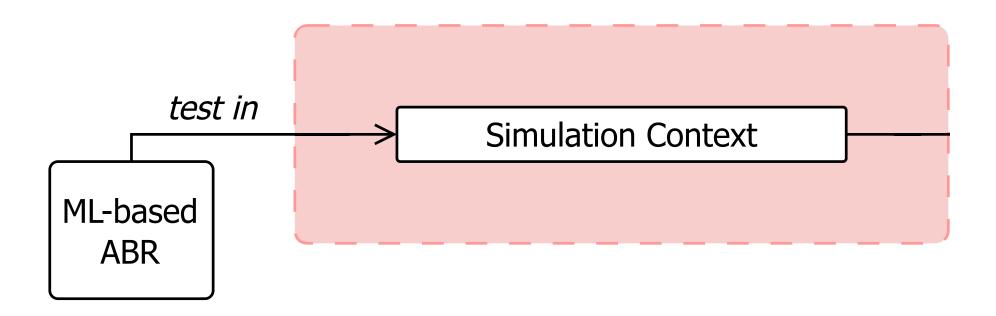
content providers [12, 25]. Nevertheless, content providers continue to struggle with delivering high-quality video to their viewers.

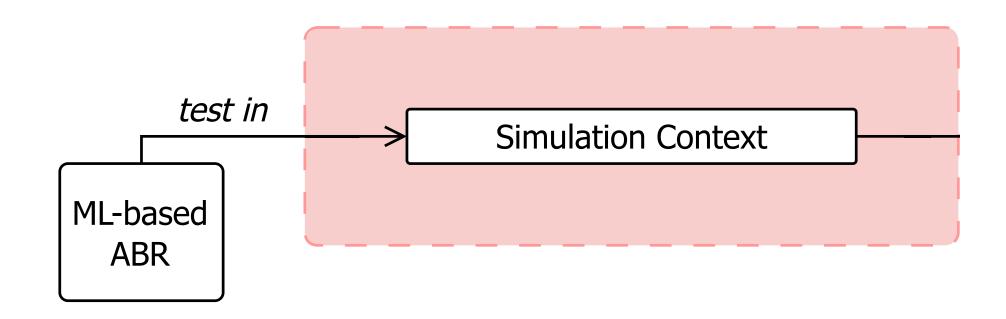
Adaptive bitrate (ABR) algorithms are the primary tool that content providers use to optimize video quality. These algorithms run on client-side video players and dynamically choose a bitrate for each video *chunk* (e.g., 4-second block). ABR algorithms make bitrate decisions based on various observations such as the estimated network throughput and playback buffer occupancy. Their goal is to maximize the user's QoE by adapting the video bitrate to the underlying network conditions. However, selecting the right bitrate can be very challenging due to (1) the variability of network throughput [18, 42, 49, 52, 53]; (2) the conflicting video QoE requirements (high bitrate, minimal rebuffering, smoothness, etc.); (3) the cascading effects of bitrate decisions (e.g., selecting a high bitrate may drain the playback buffer to a dangerous level and cause rebuffering in the future); and (4) the coarse-grained nature of ABR decisions. We elaborate on these challenges in §2.

The majority of existing ABR algorithms (§7) develop fixed control rules for making bitrate decisions based on estimated network throughput ("rate-based" algorithms [21, 42]), playback buffer size ("buffer-based" schemes [19, 41]), or a combination of the two signals [26]. These schemes require significant tuning and do not generalize to different network conditions and QoE objectives. The state-of-the-art approach, MPC [51], makes bitrate decisions by solv-

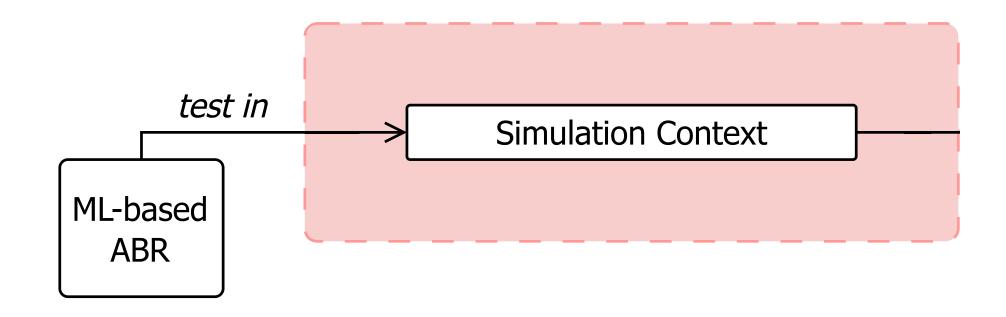
Y. Sun, et al., 2016 (SIGCOMM)

H. Mao, et al., 2017 (SIGCOMM)



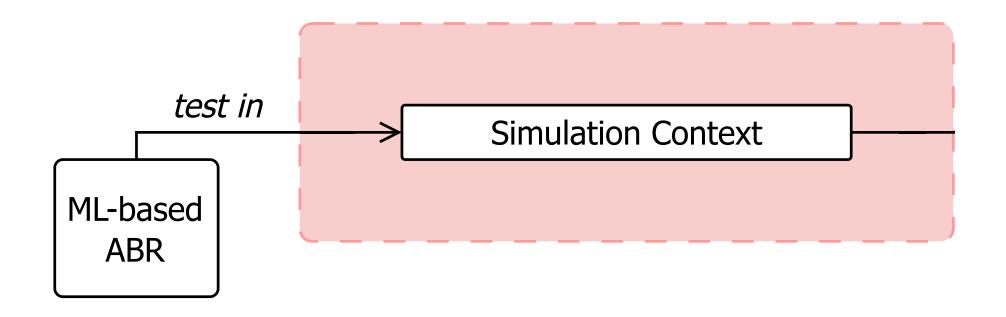


ML-based algorithms are failing to perform in practice^{1,3}:



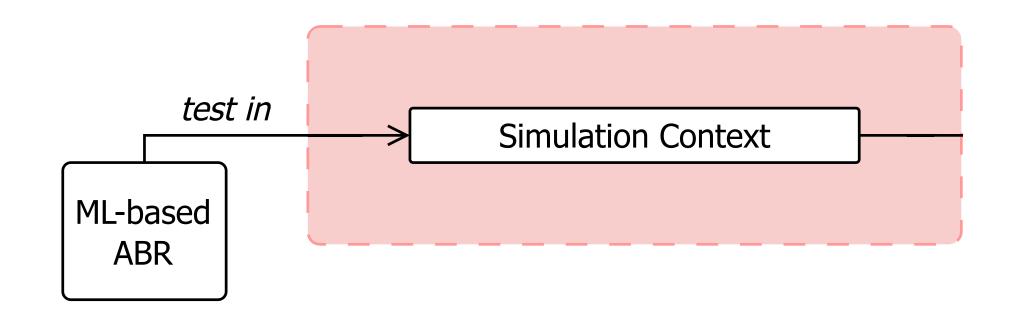
ML-based algorithms are failing to perform in practice^{1,3}:

Network conditions vary across the Internet



ML-based algorithms are failing to perform in practice^{1,3}:

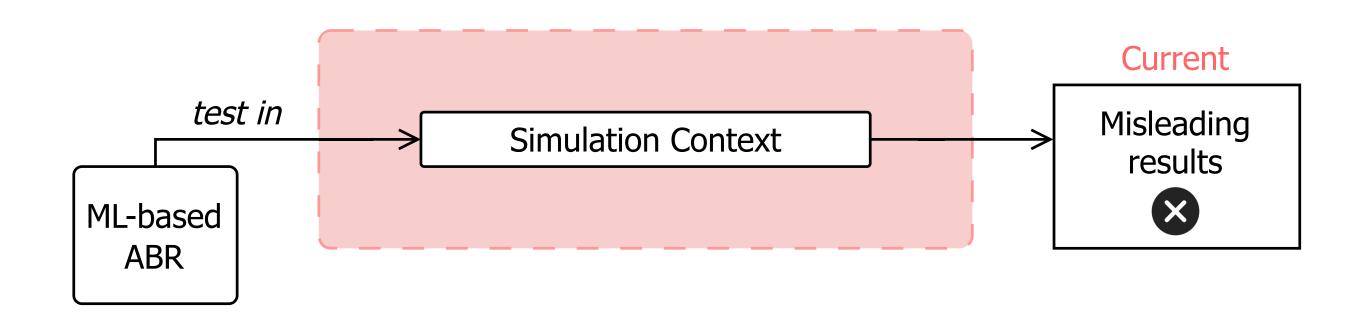
- Network conditions vary across the Internet
- Traffic and user behavior is heavy-tailed



ML-based algorithms are failing to perform in practice^{1,3}:

- Network conditions vary across the Internet
- Traffic and user behavior is heavy-tailed

Modeling networks is hard!



ML-based algorithms are failing to perform in practice^{1,3}:

- Network conditions vary across the Internet
- Traffic and user behavior is heavy-tailed

Modeling networks is hard!

Testing on the Internet

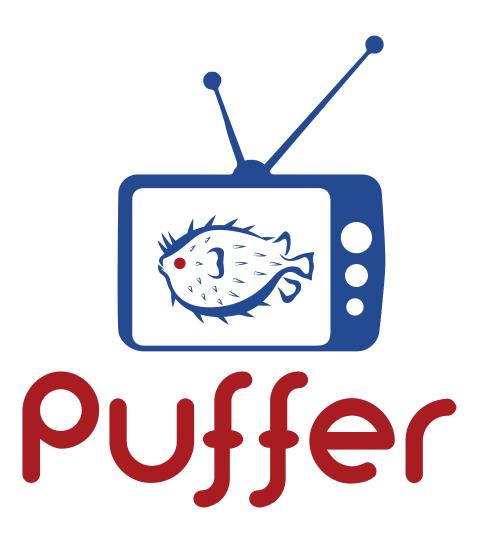
Testing on the Internet

The Puffer project:

Testing on the Internet

The Puffer project:

YouTube like streaming platform



The Puffer project:

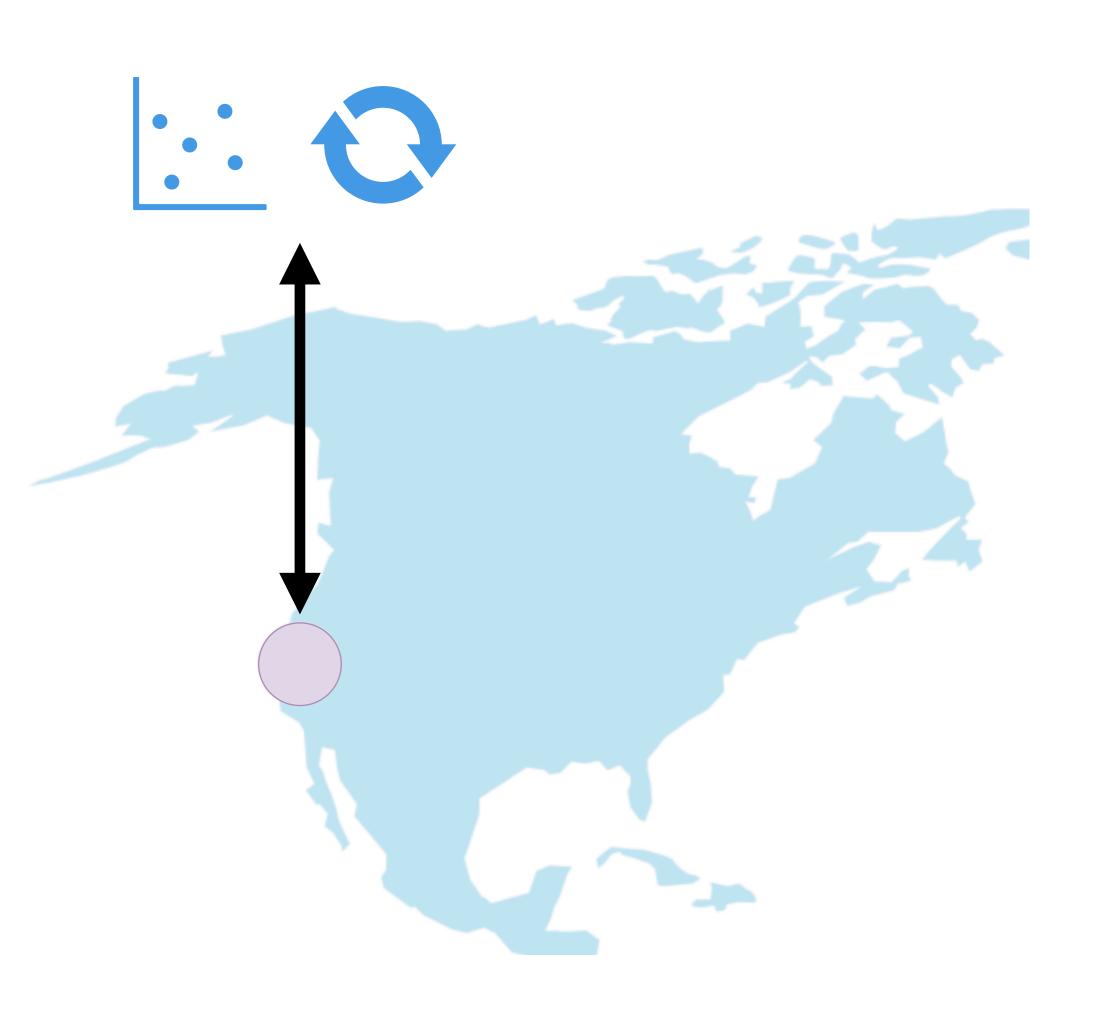
- YouTube like streaming platform
- Streaming live TV to users across the US

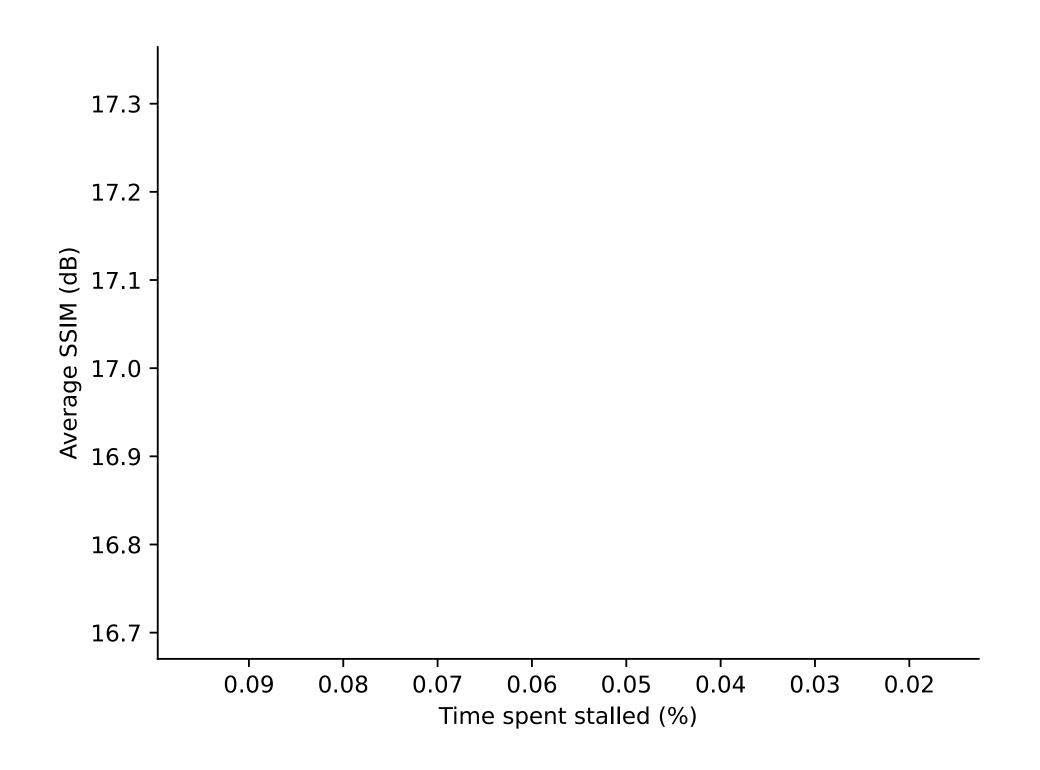
The Puffer project:

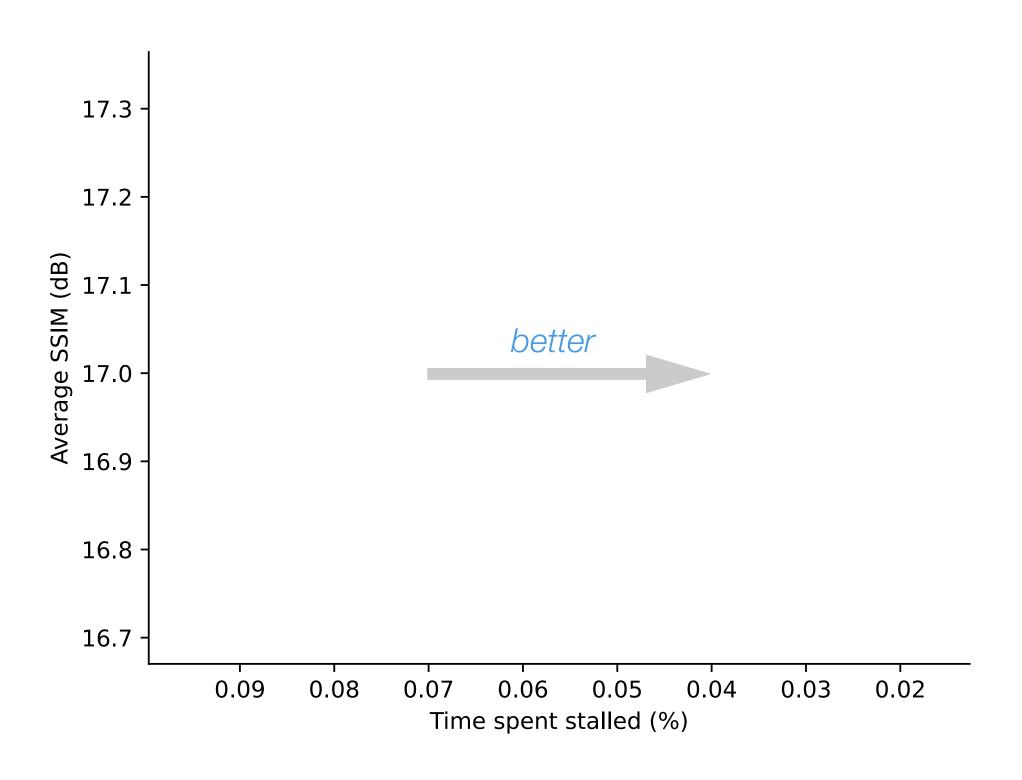
- YouTube like streaming platform
- Streaming live TV to users across the US
- Hosts various state-of-the-art ABR schemes

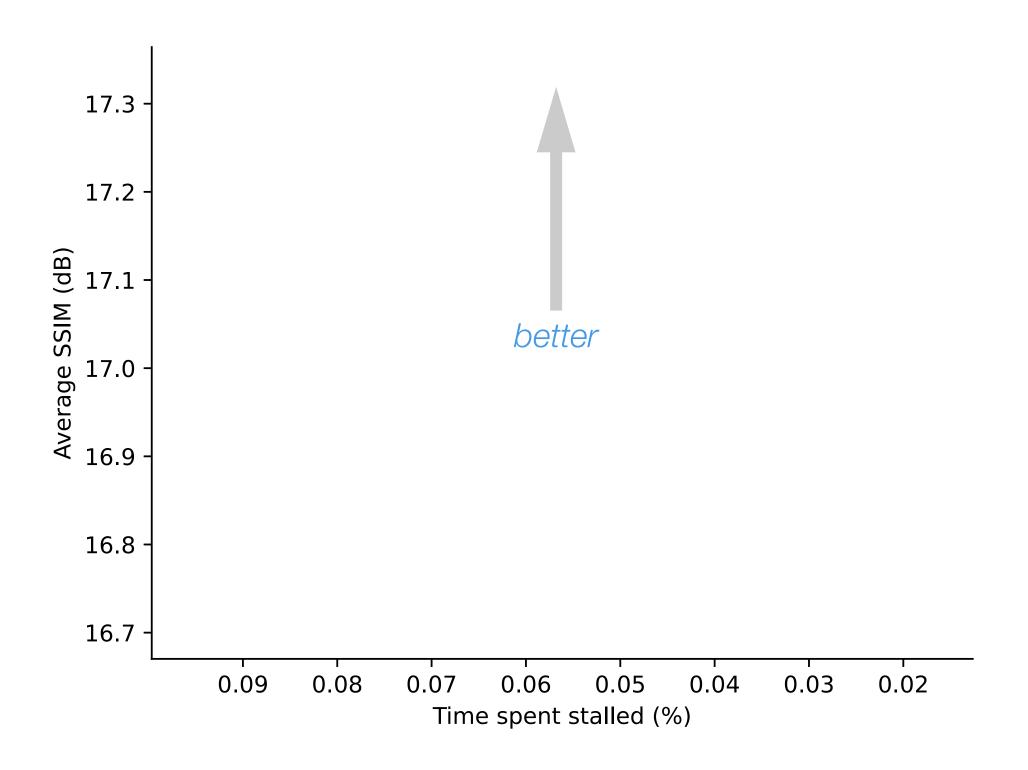
The Puffer project:

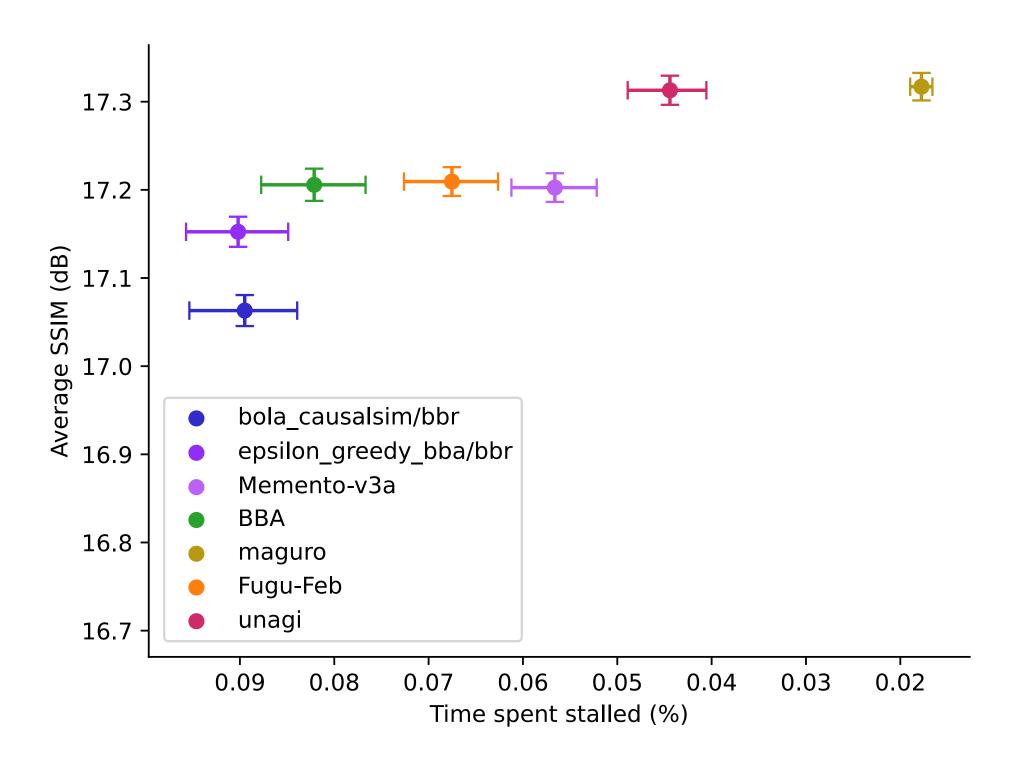
- YouTube like streaming platform
- Streaming live TV to users across the US
- Hosts various state-of-the-art ABR schemes
- Data collection for evaluation and training in situ

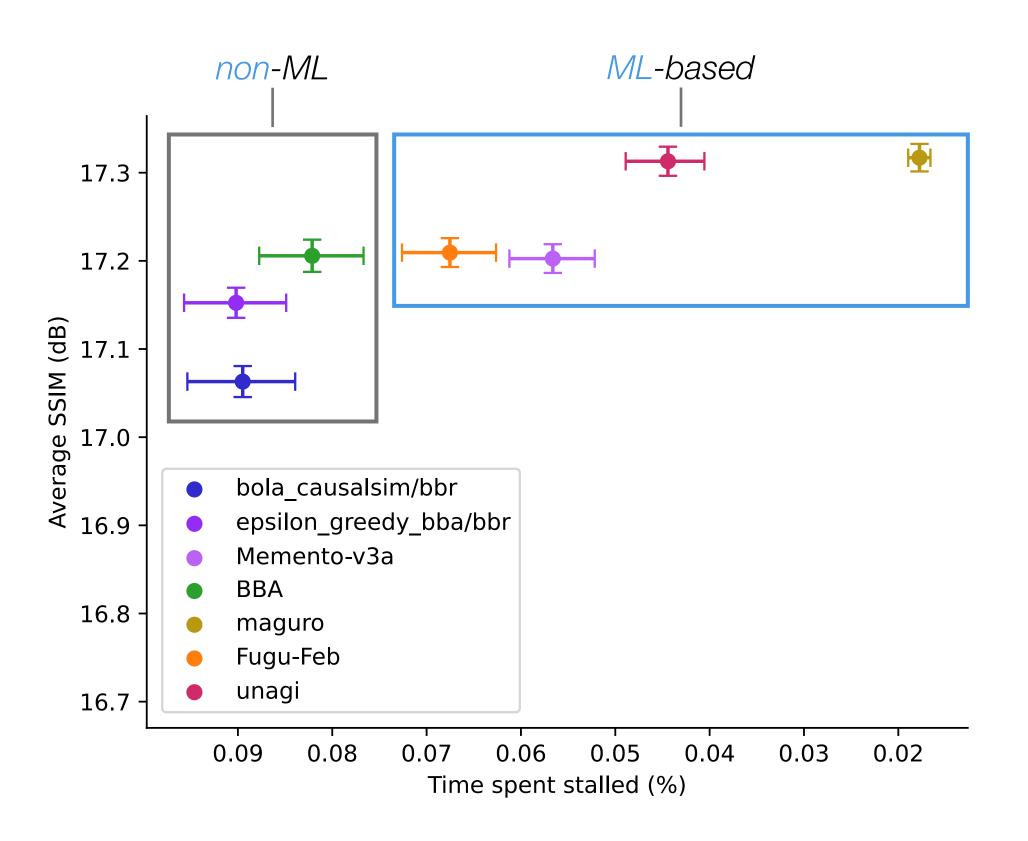






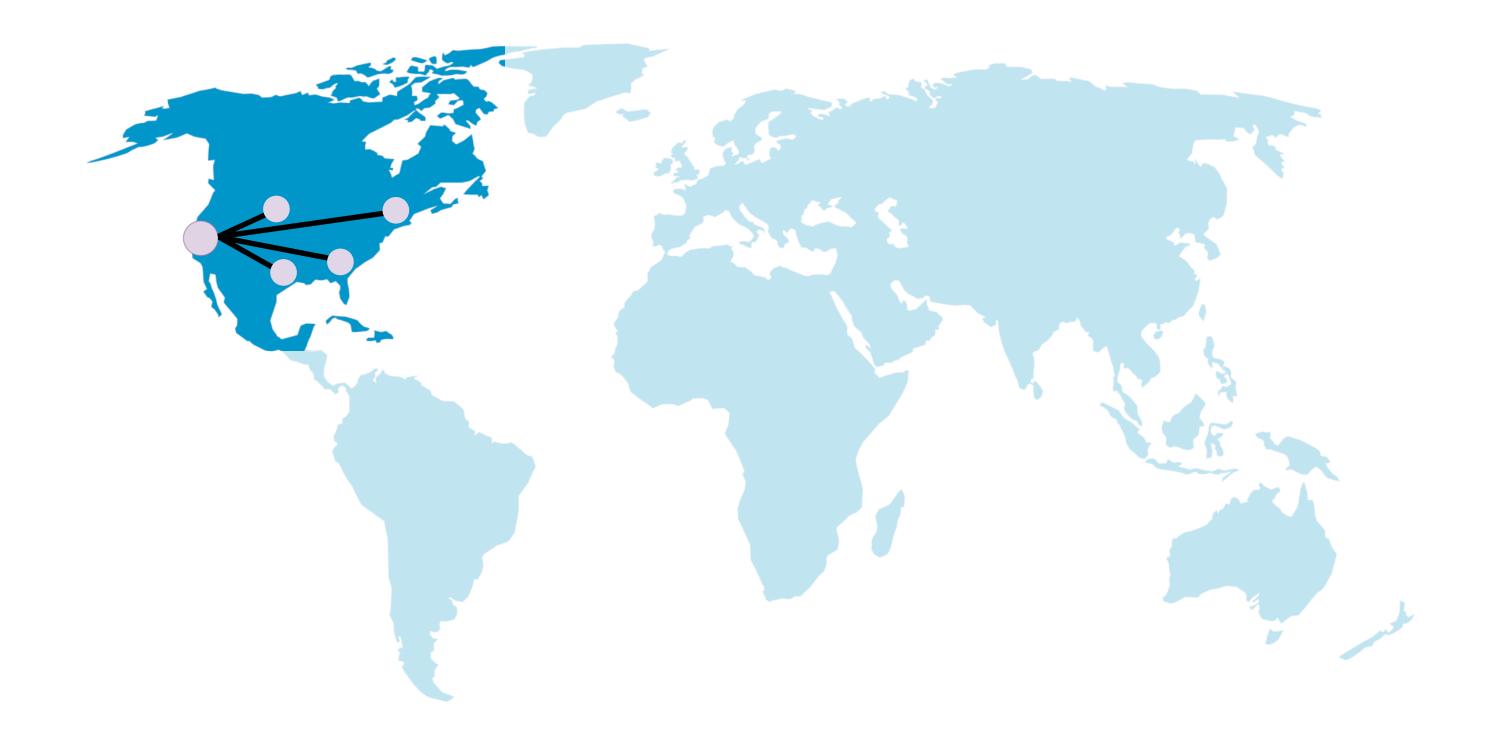




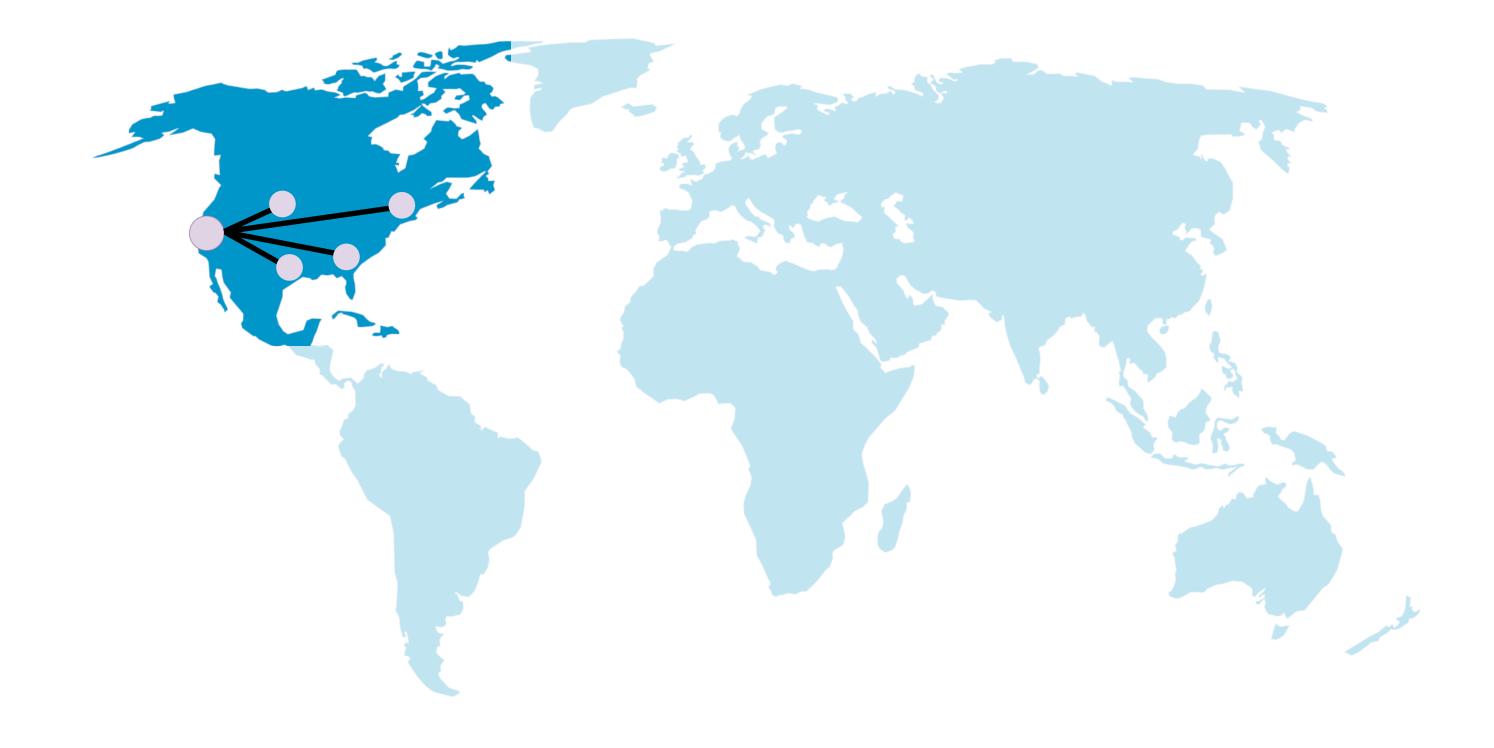


The Puffer project ... is limited:

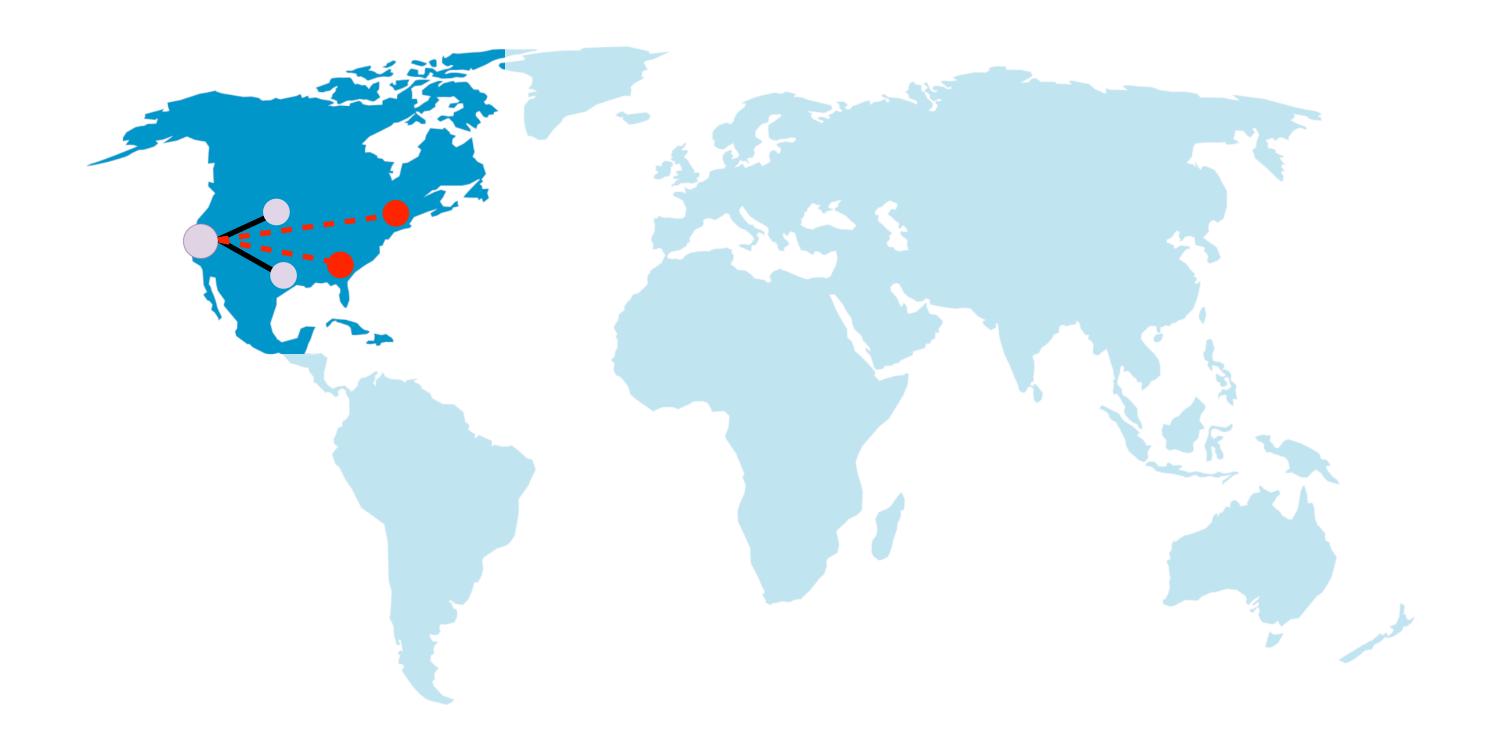
Server in Stanford and US clients



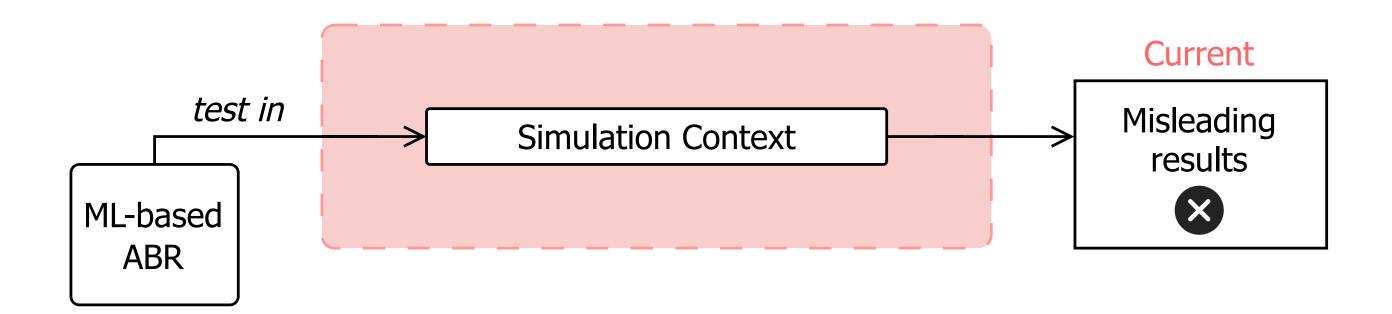
- Server in Stanford and US clients
- Results indicate survivorship bias

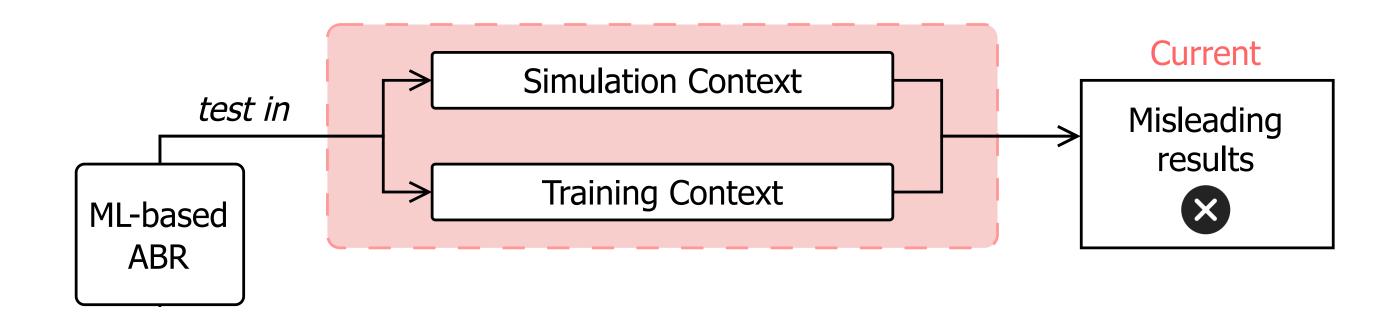


- Server in Stanford and US clients
- Results indicate survivorship bias



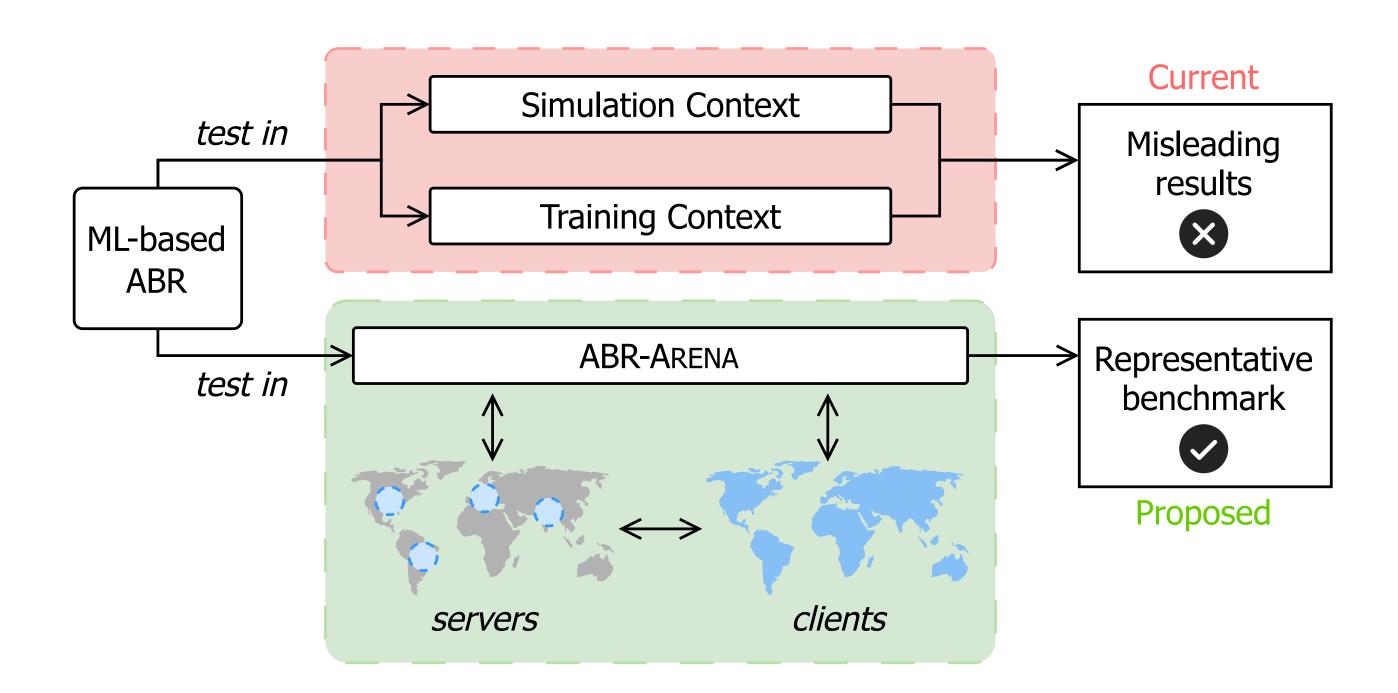
- Server in Stanford and US clients
- Results indicate survivorship bias
- Hard to build, deploy and scale



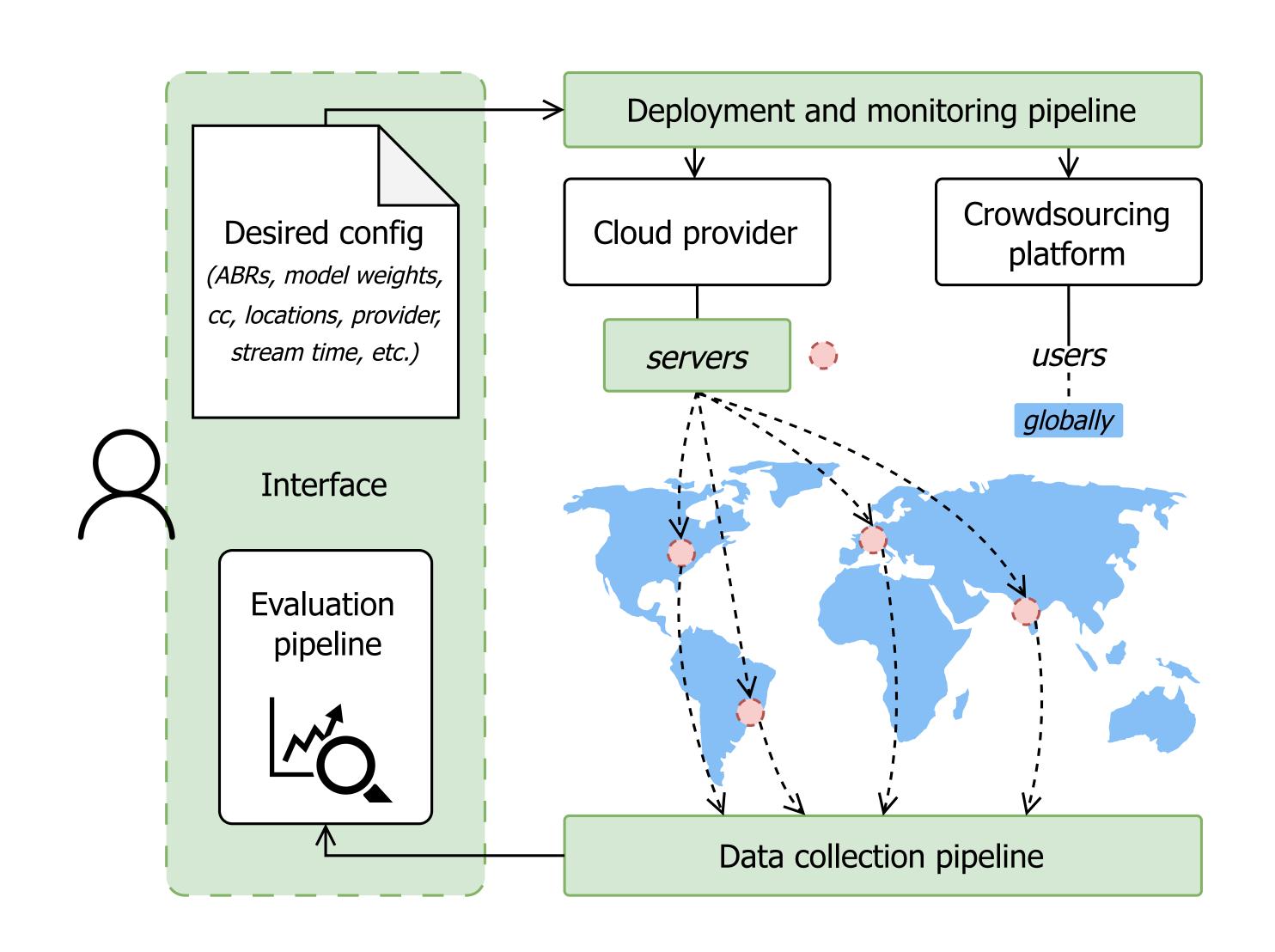


→ Do Puffer's results suffer from similar limitations as results from synthetic environments?

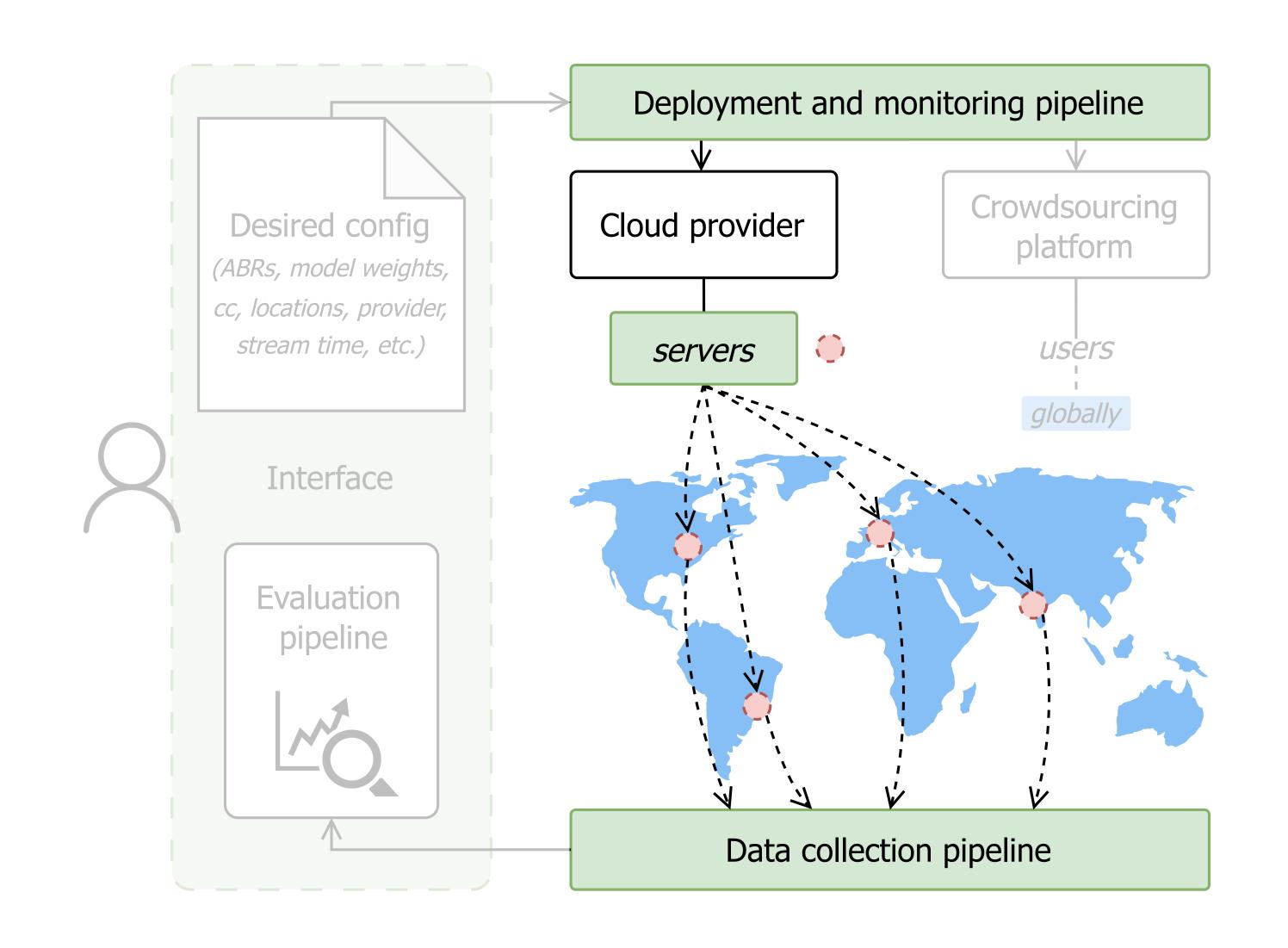
Introducing ABR-Arena



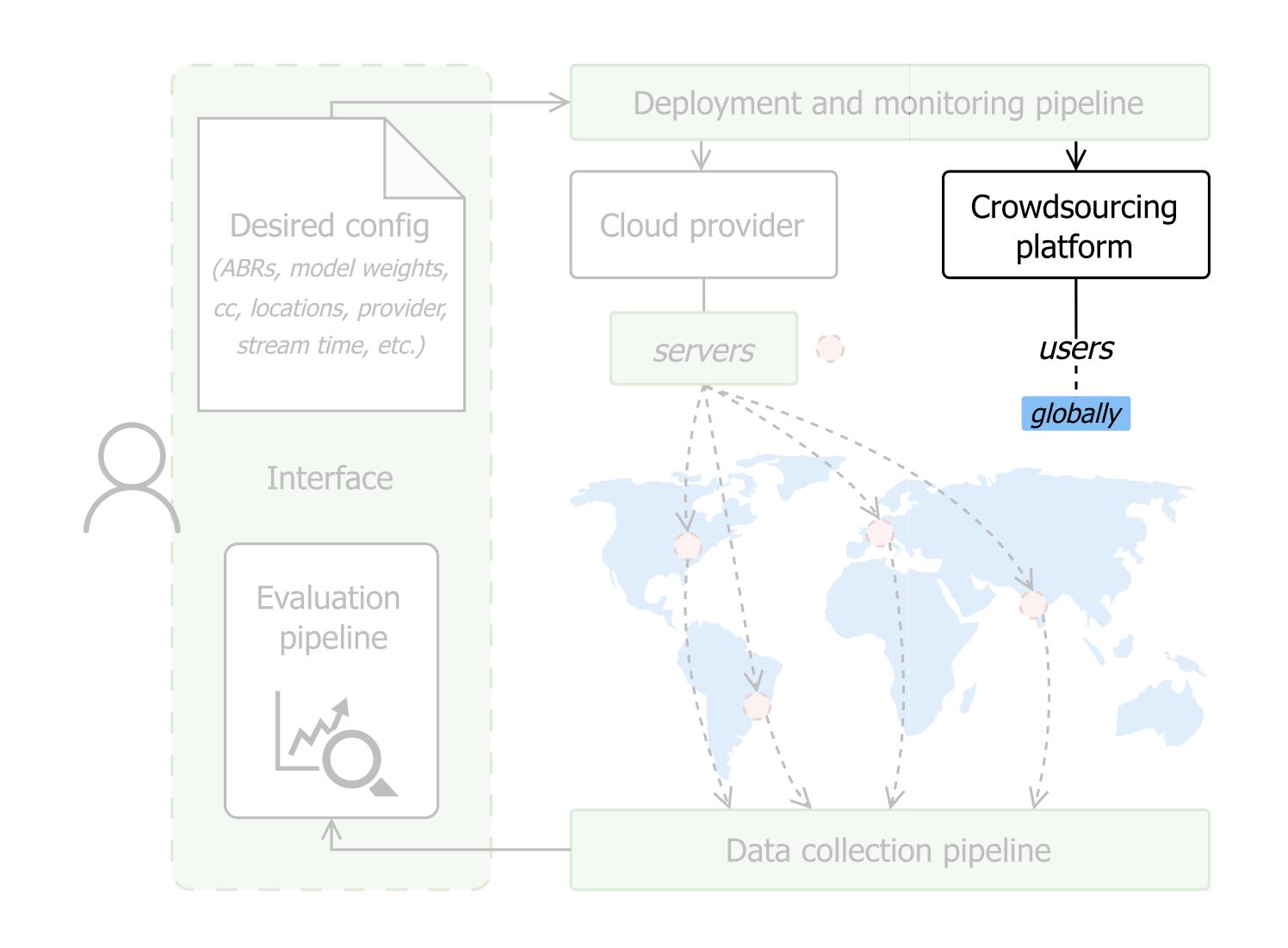
- Regional diversity
- Survivorship bias
- Scalability



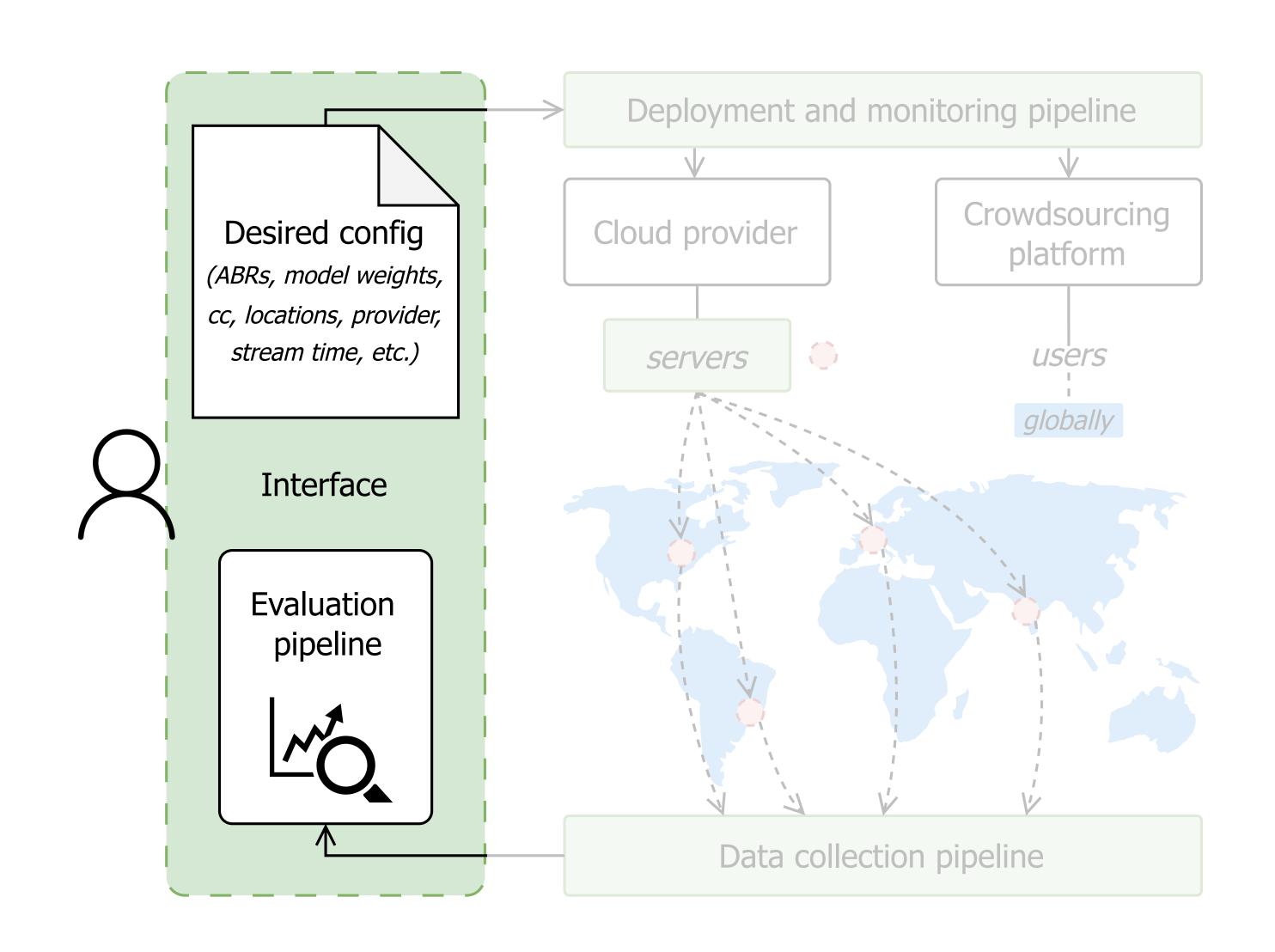
- Regional diversity
- Survivorship bias
- Scalability



- Regional diversity
- Survivorship bias
- Scalability



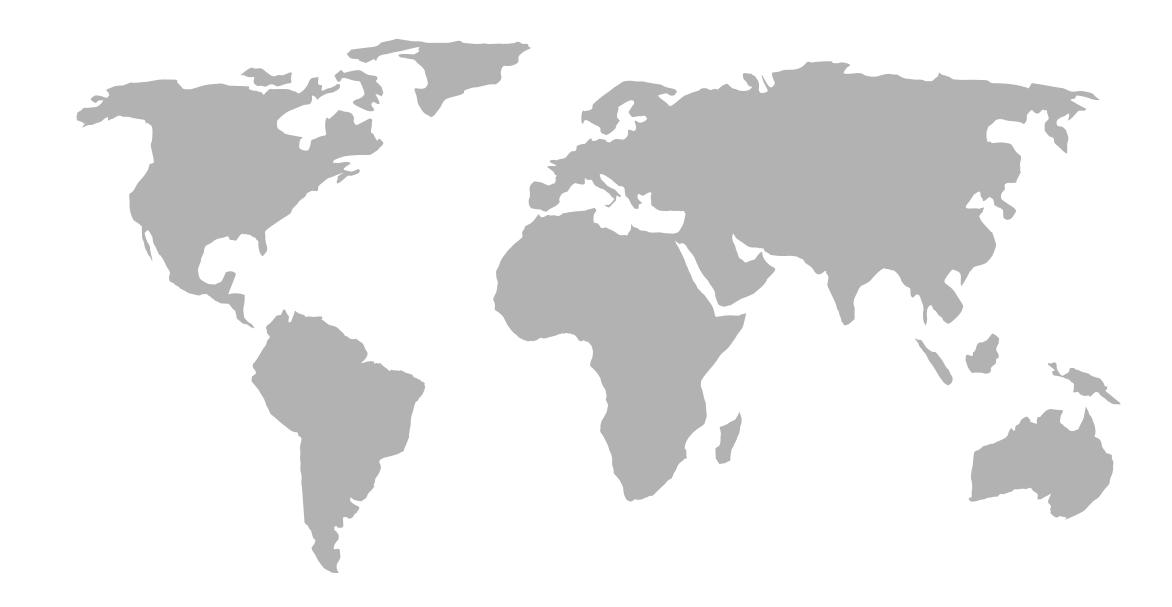
- Regional diversity
- Survivorship bias
- Scalability



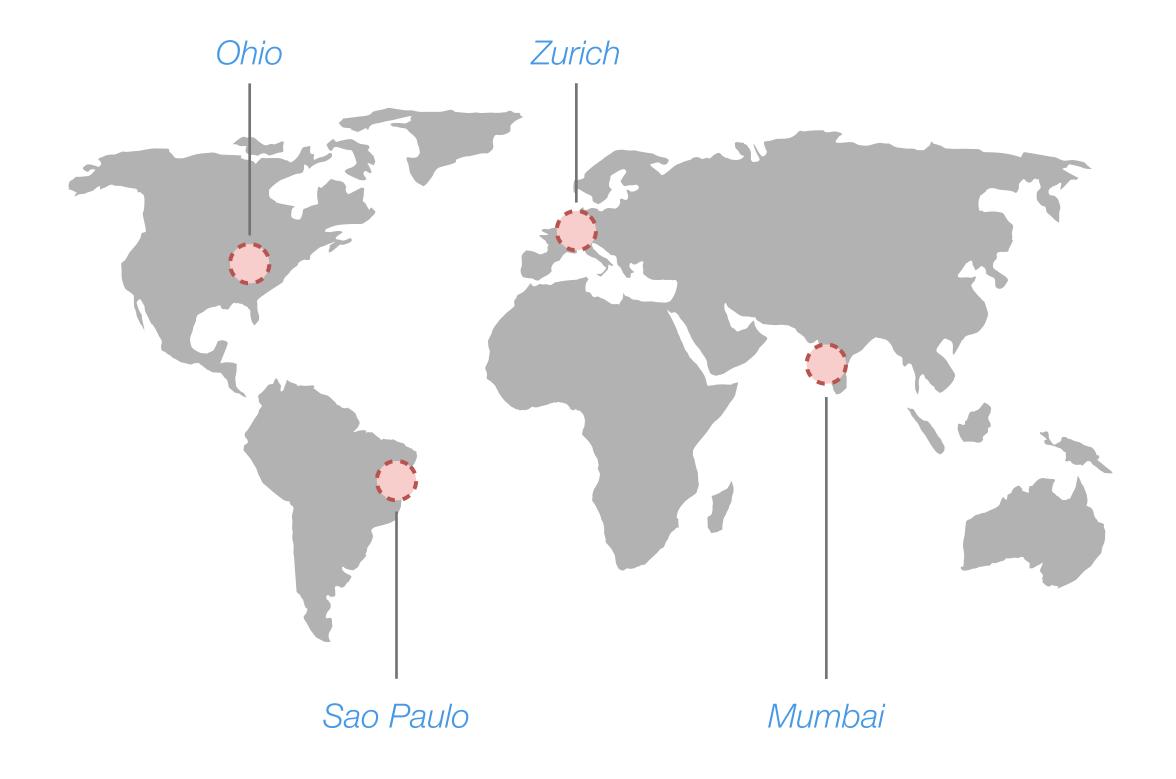
Is there a gap between results on Puffer and deployments in practice?

Experiment setup:

Source users globally

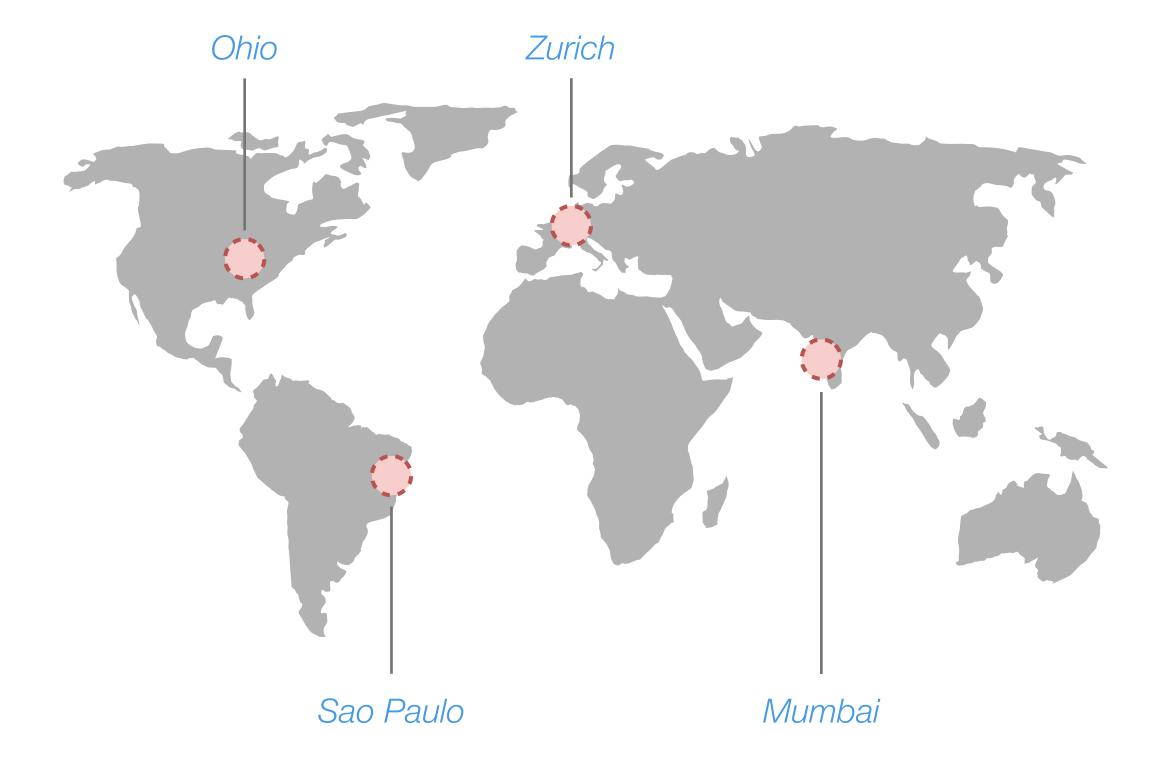


- Source users globally
- Four server locations

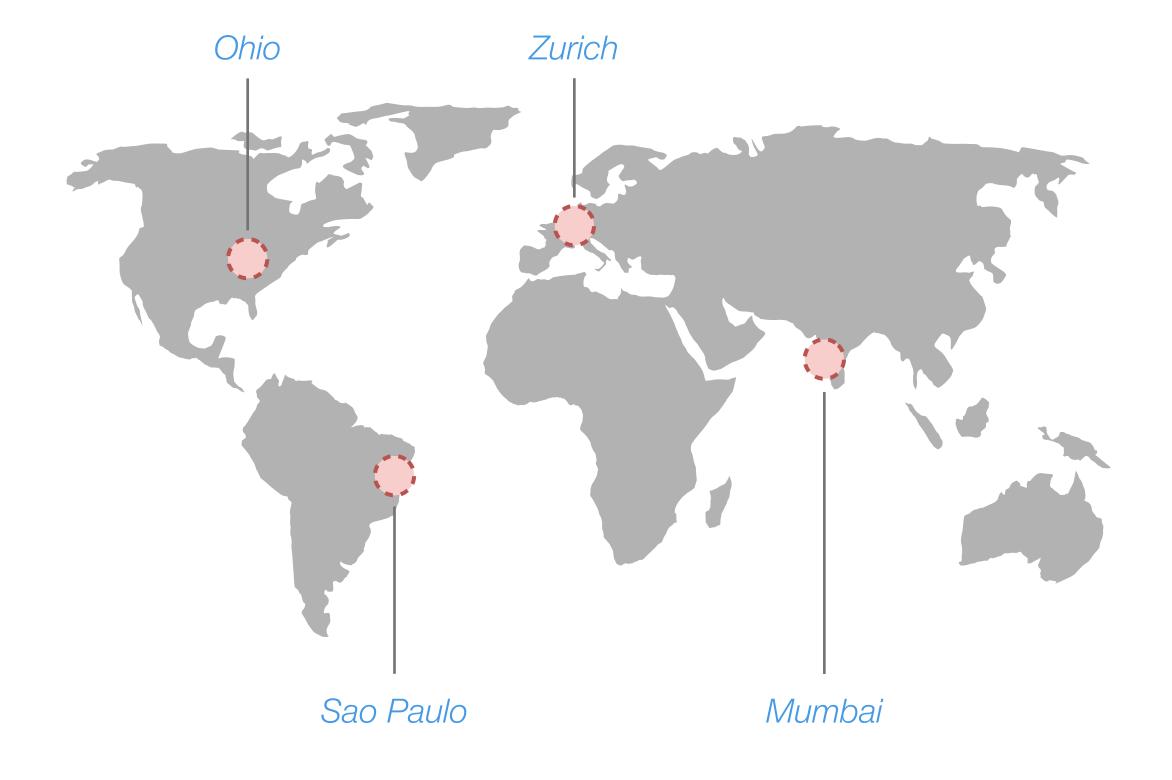


- Source users globally
- Four server locations
- Stream video for 160 seconds

- Source users globally
- Four server locations
- Stream video for 160 seconds
- 11'156 users and 510 hours total



- Source users globally
- Four server locations
- Stream video for 160 seconds
- 11'156 users and 510 hours total
- Four ABR algorithms



- Source users globally
- Four server locations
- Stream video for 160 seconds
- 11'156 users and 510 hours total

Experiment setup:

- Source users globally
- Four server locations
- Stream video for 160 seconds
- 11'156 users and 510 hours total
- Four ABR algorithms ——

ML: Unagi⁴, Maguro⁴ and Fugu³ – all trained on Puffer

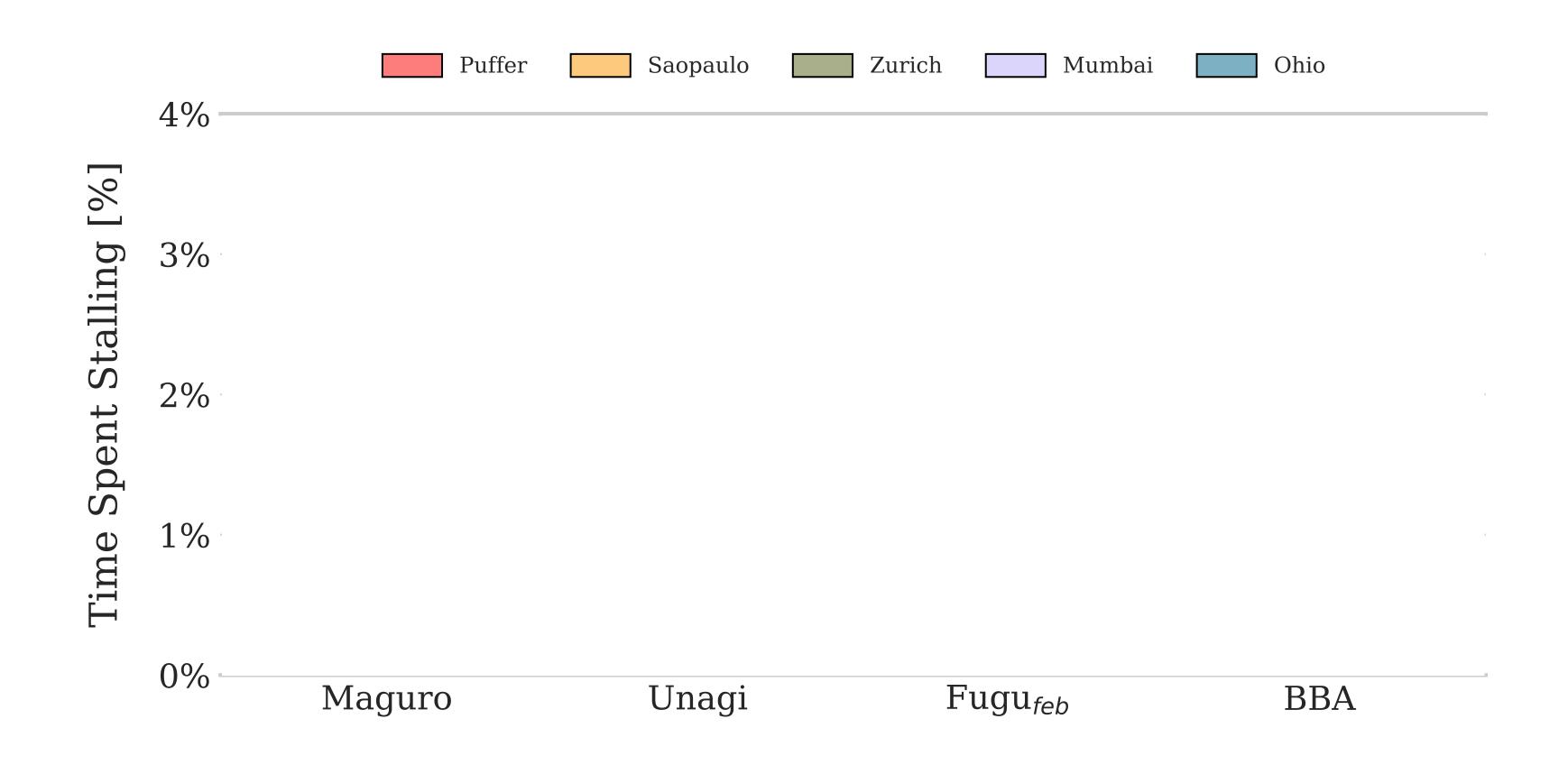
Experiment setup:

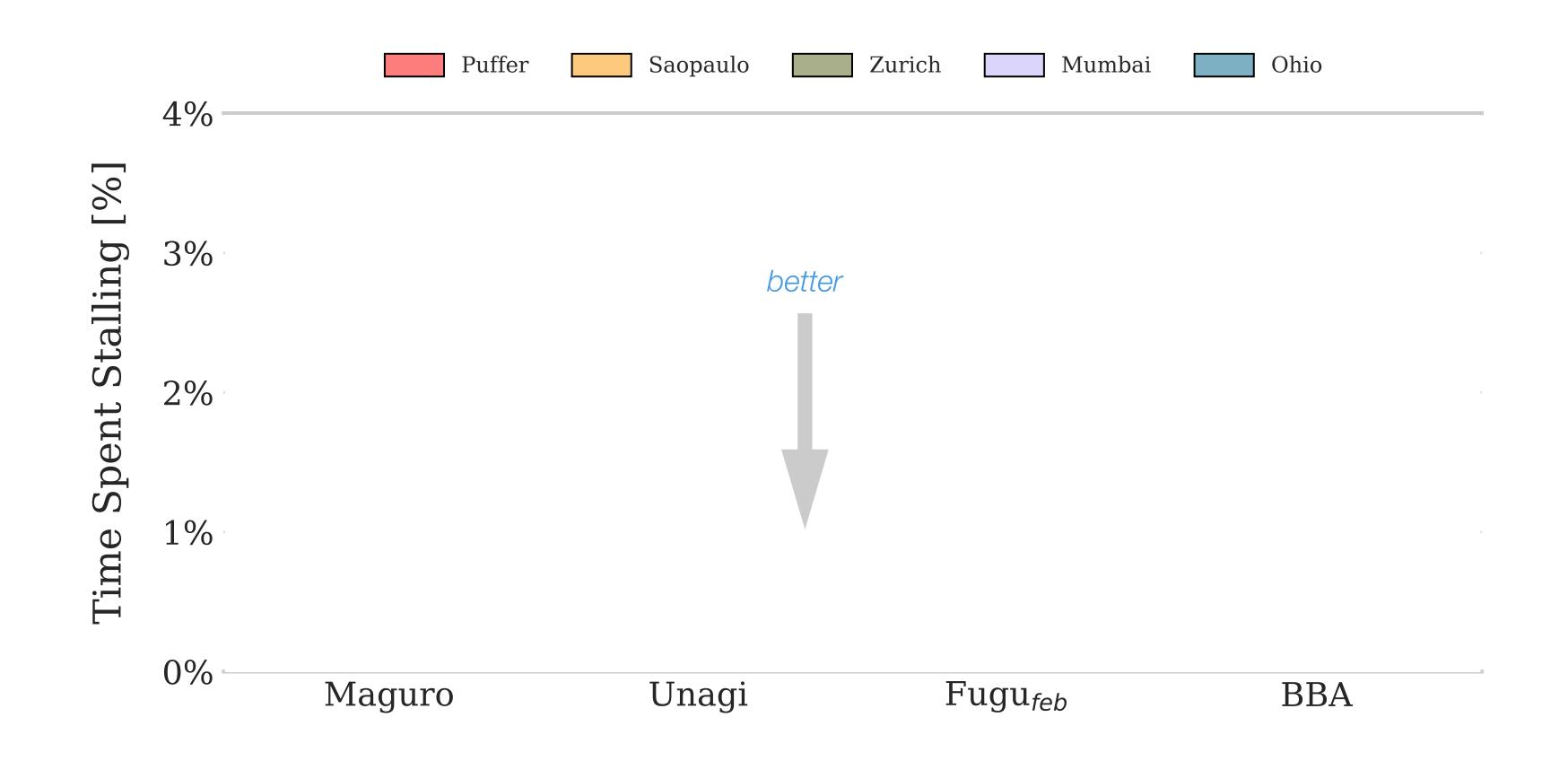
- Source users globally
- Four server locations
- Stream video for 160 seconds
- 11'156 users and 510 hours total

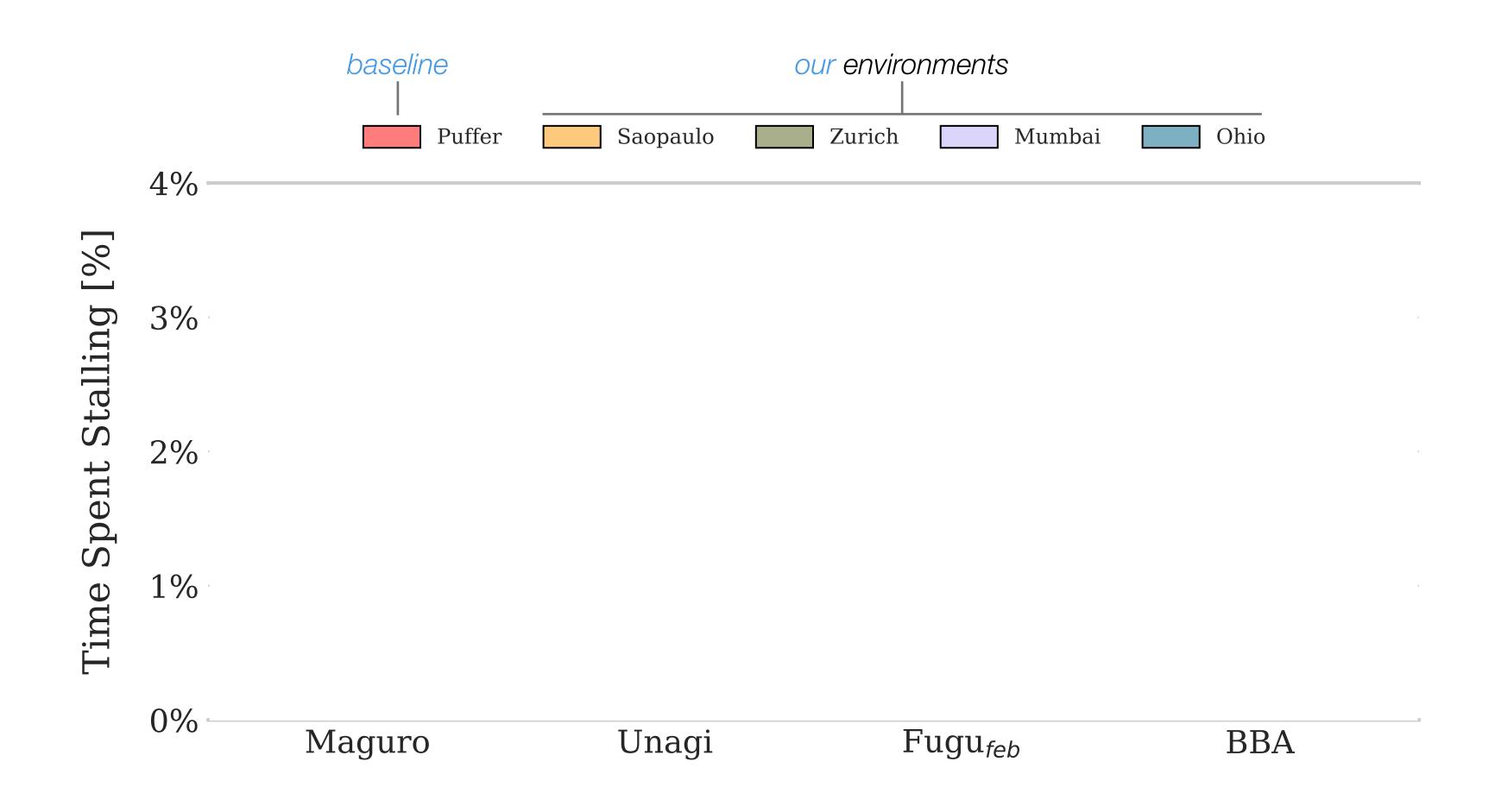
Four ABR algorithms

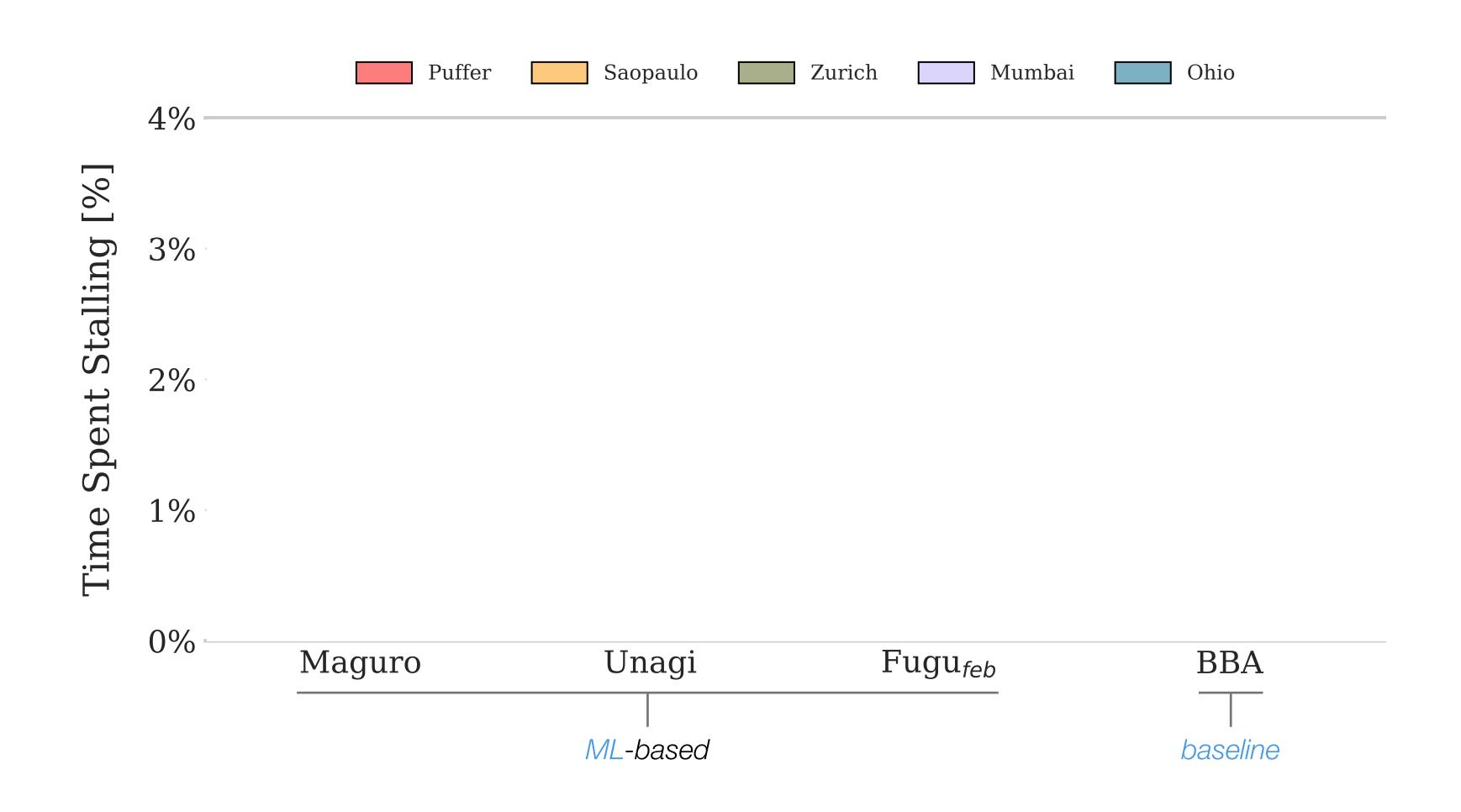
ML: Unagi⁴, Maguro⁴ and Fugu³ – all trained on Puffer

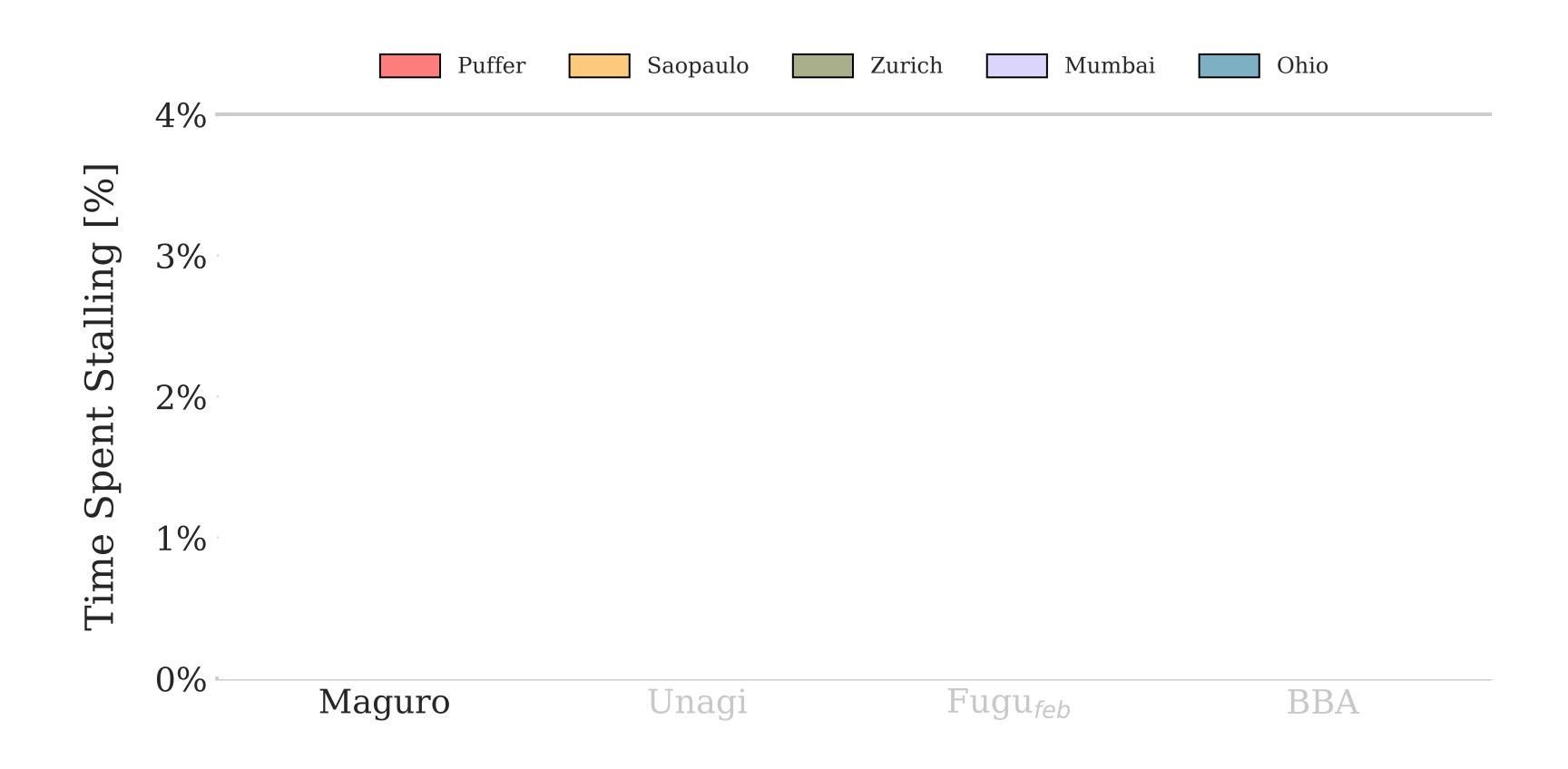
Non-ML: BBA⁵

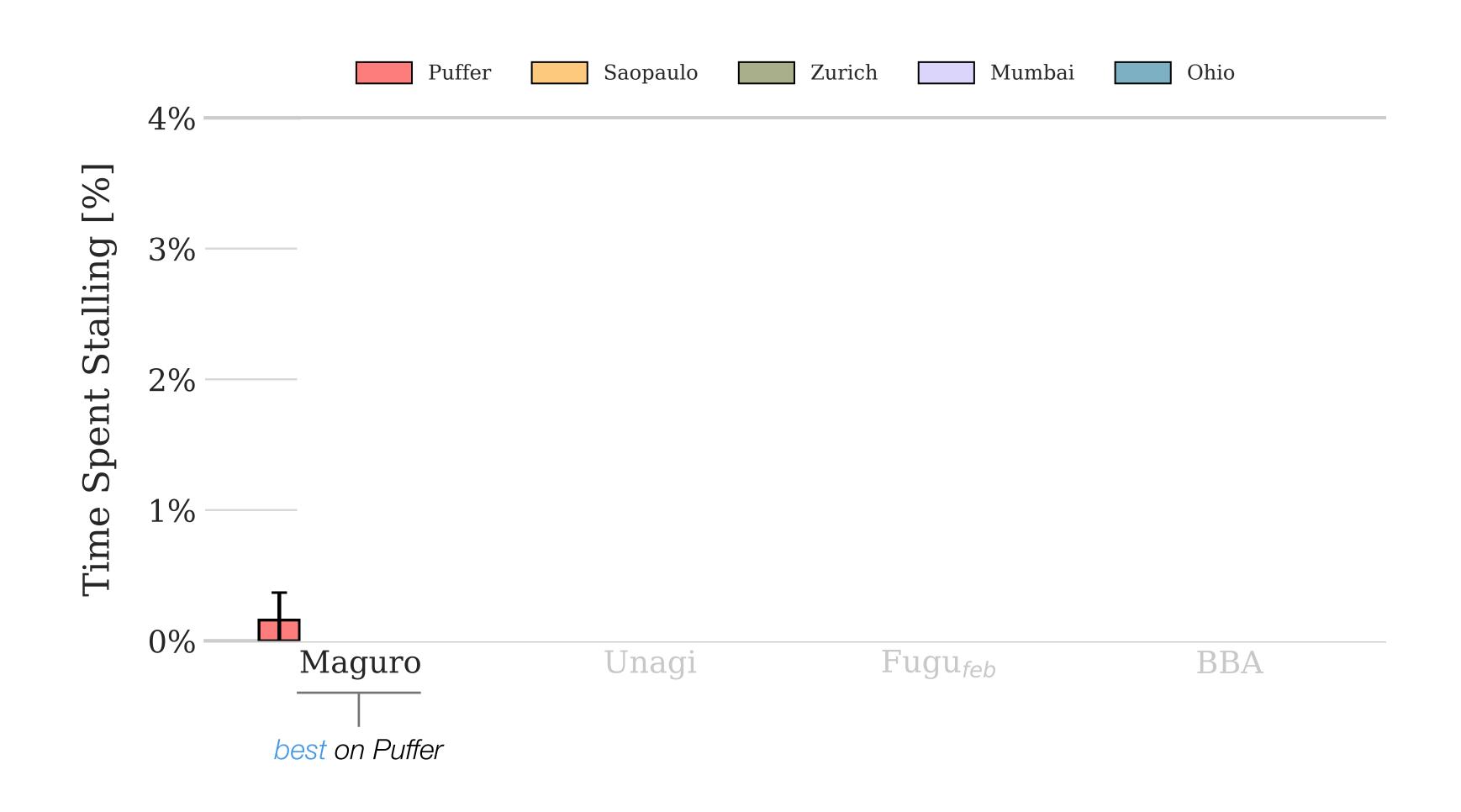


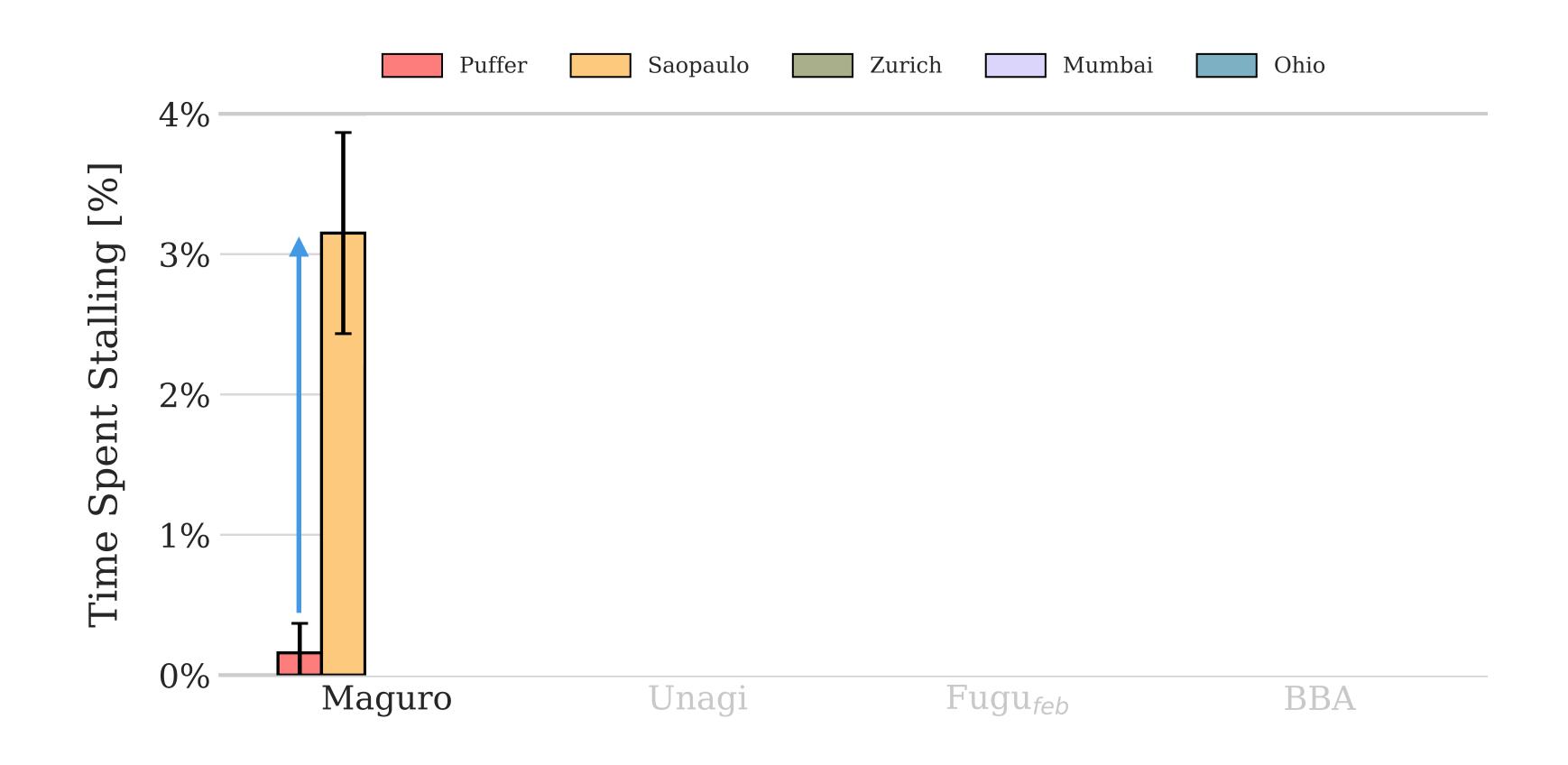


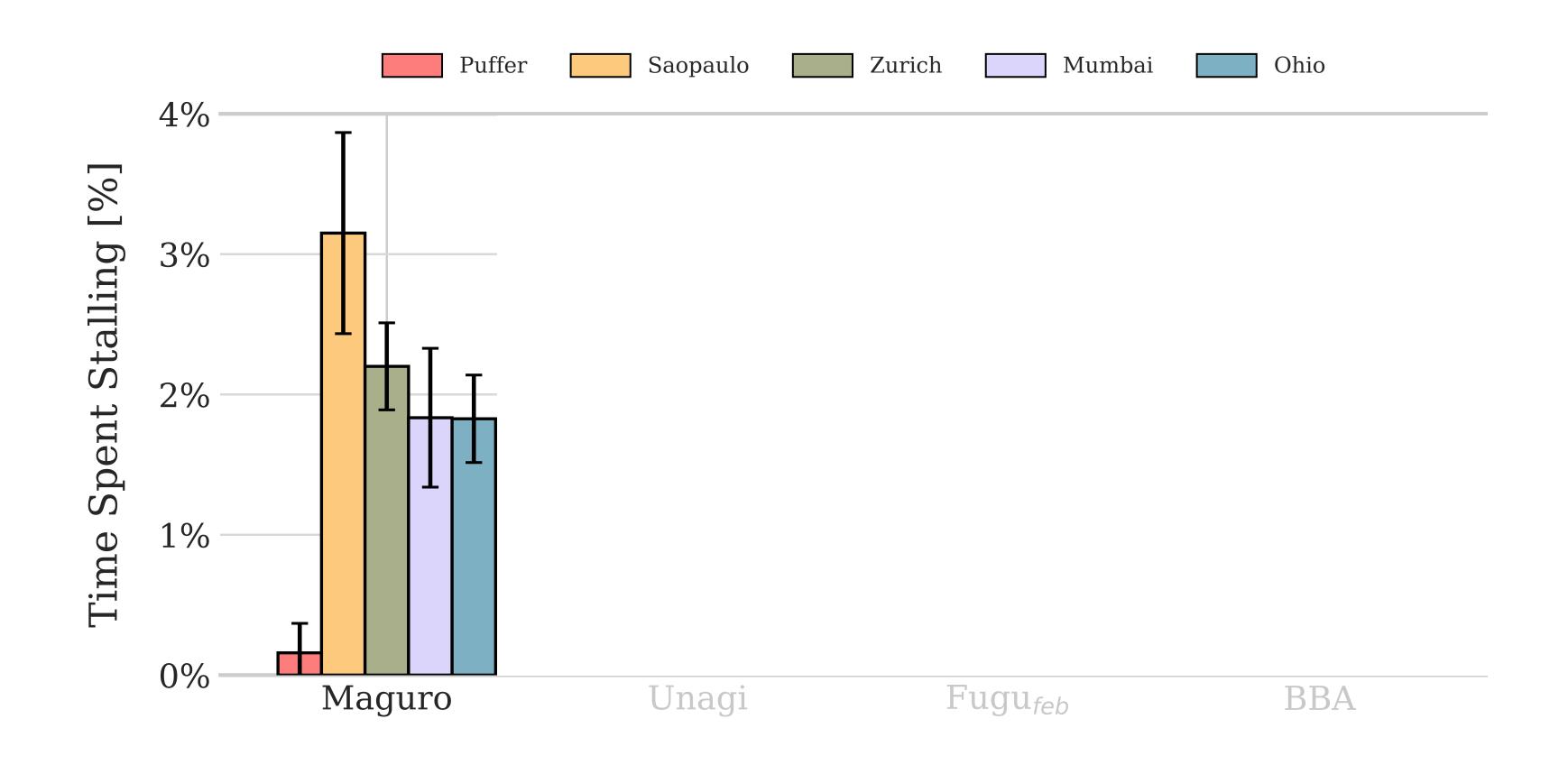


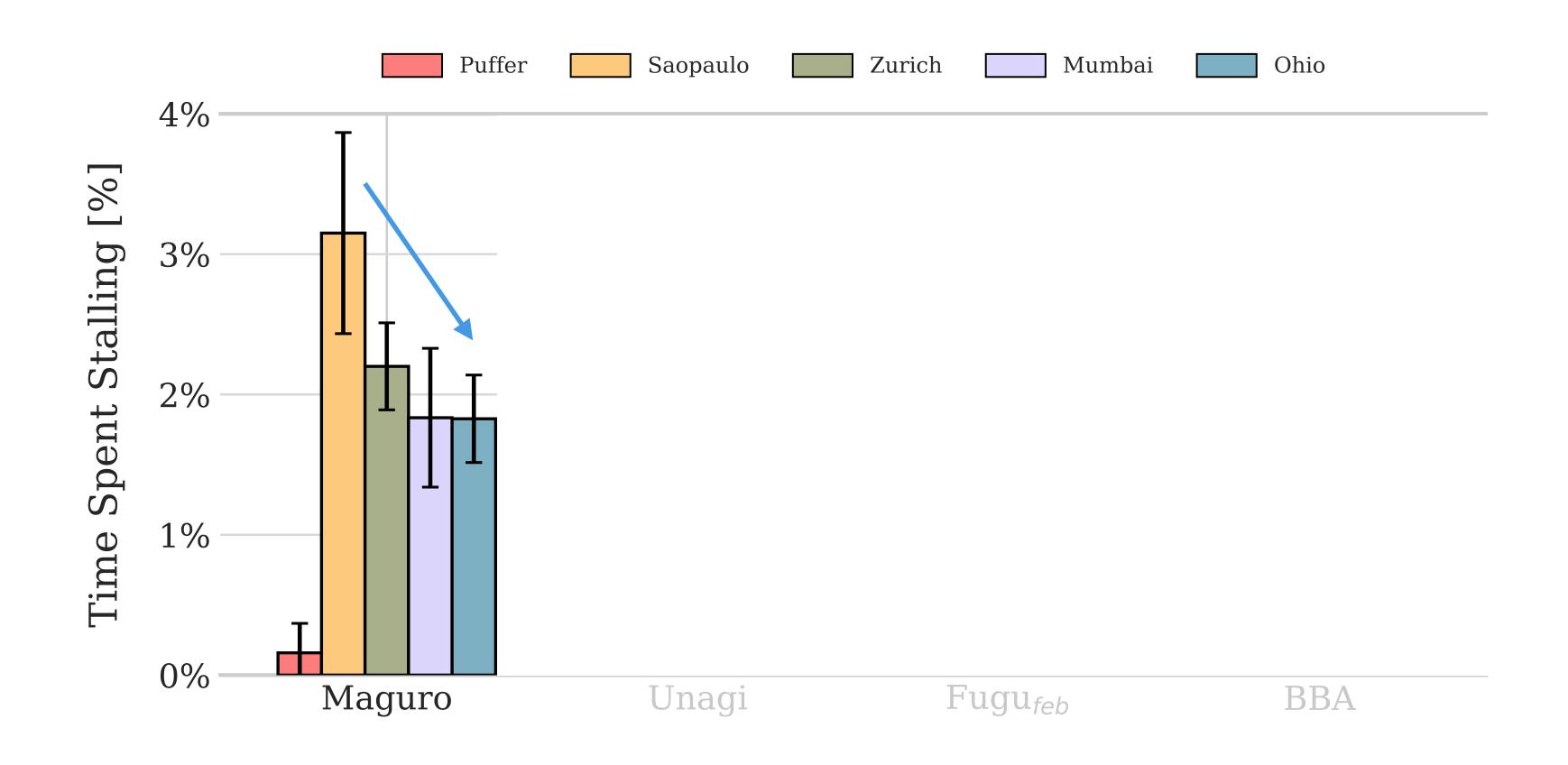


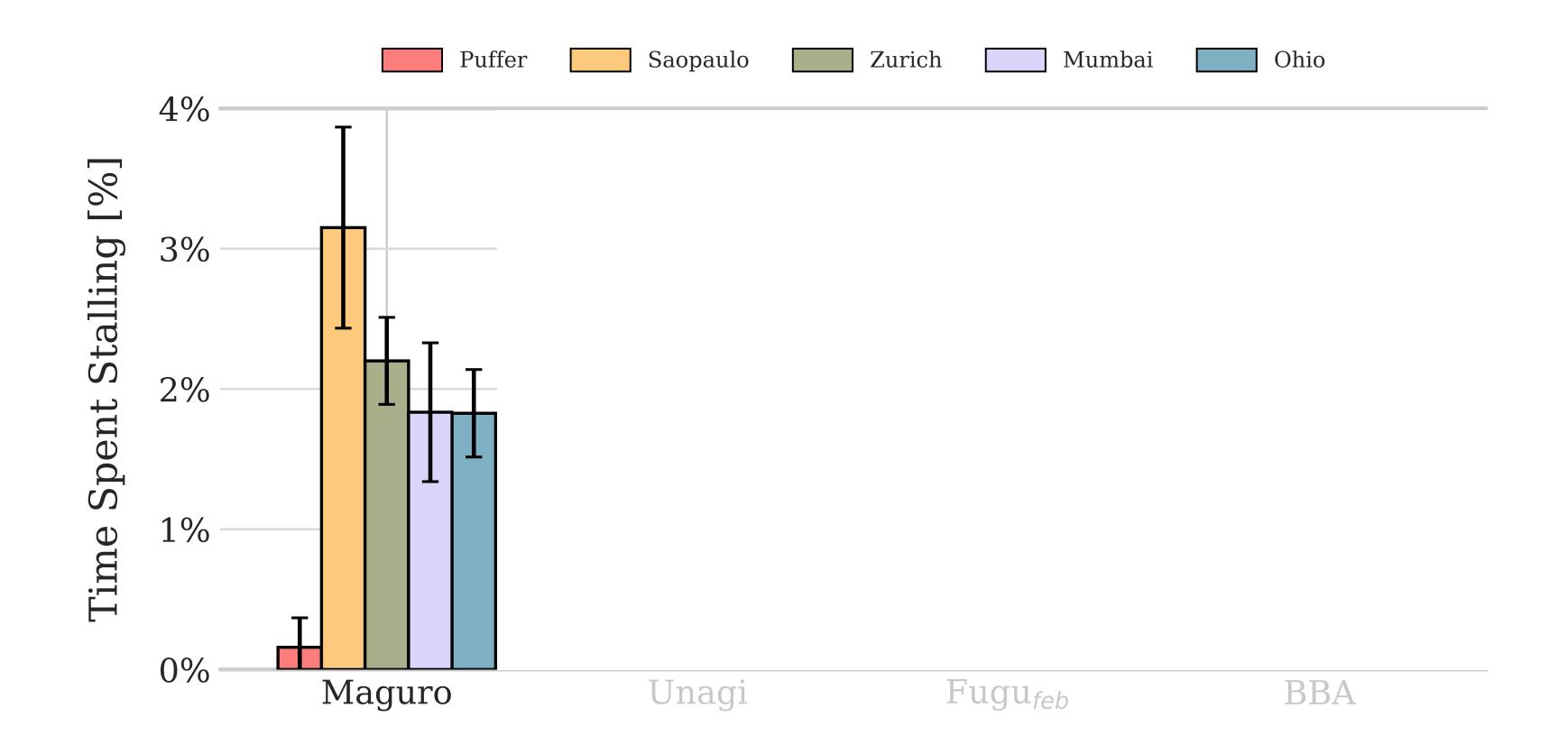




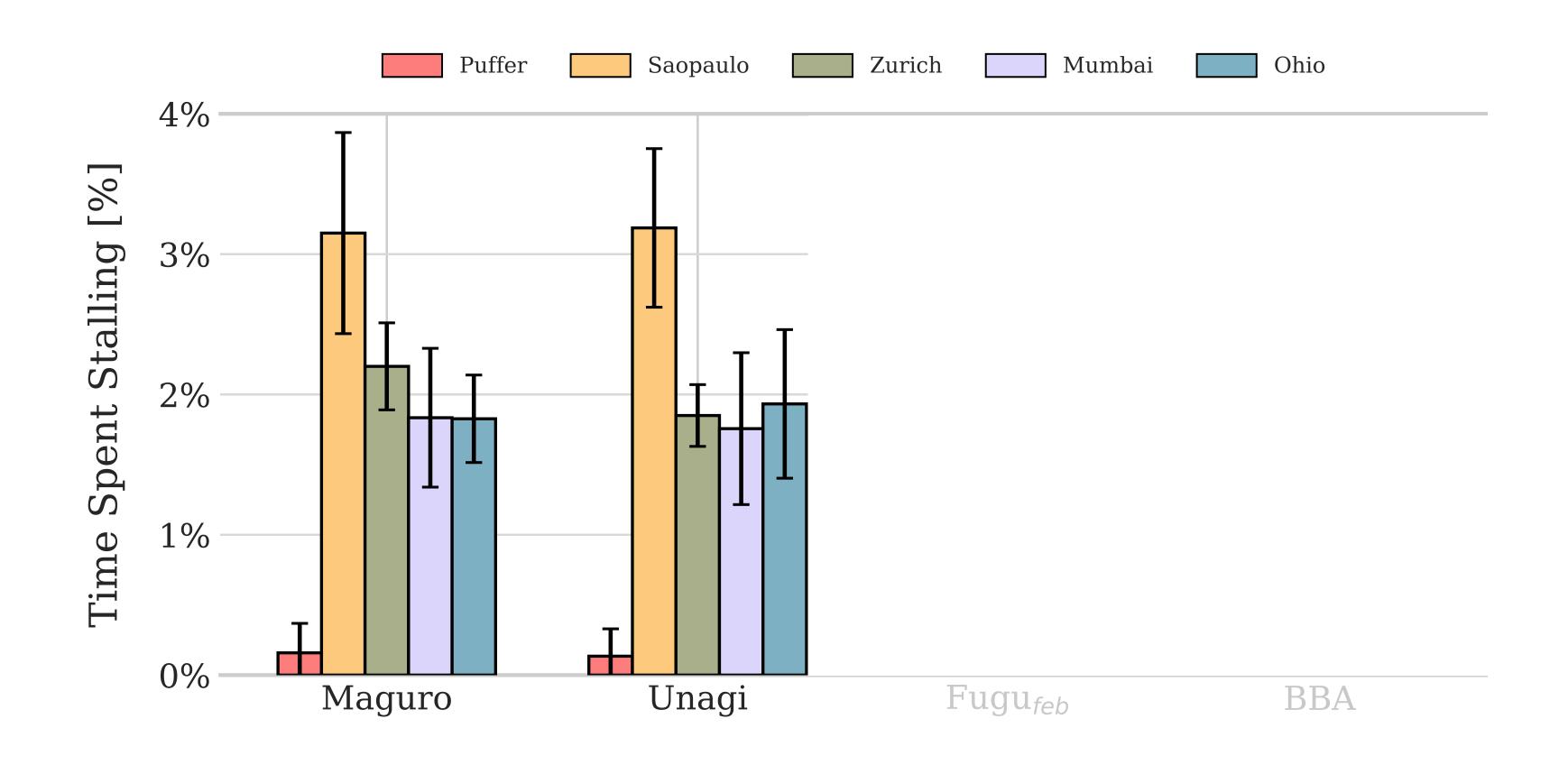


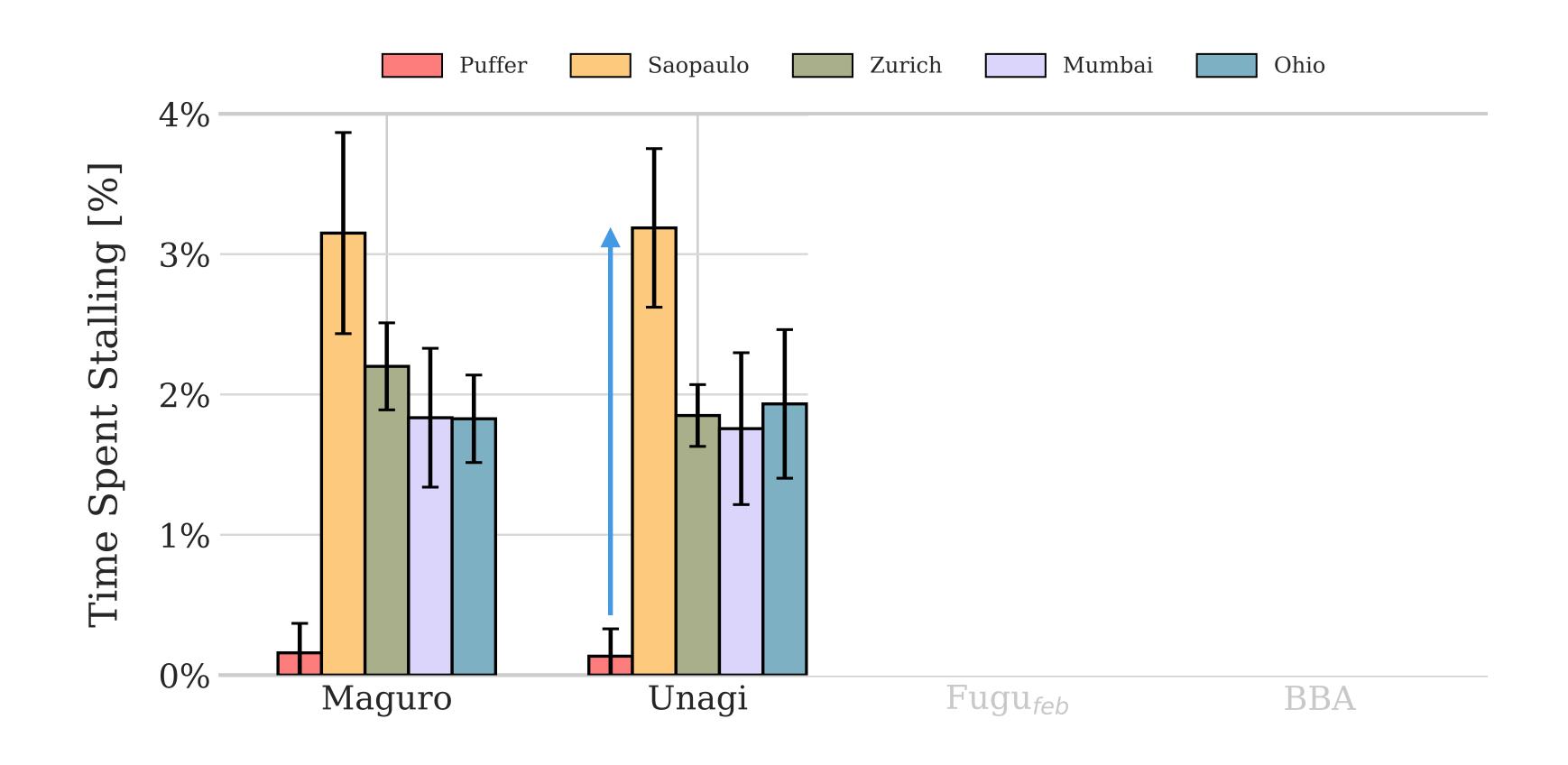


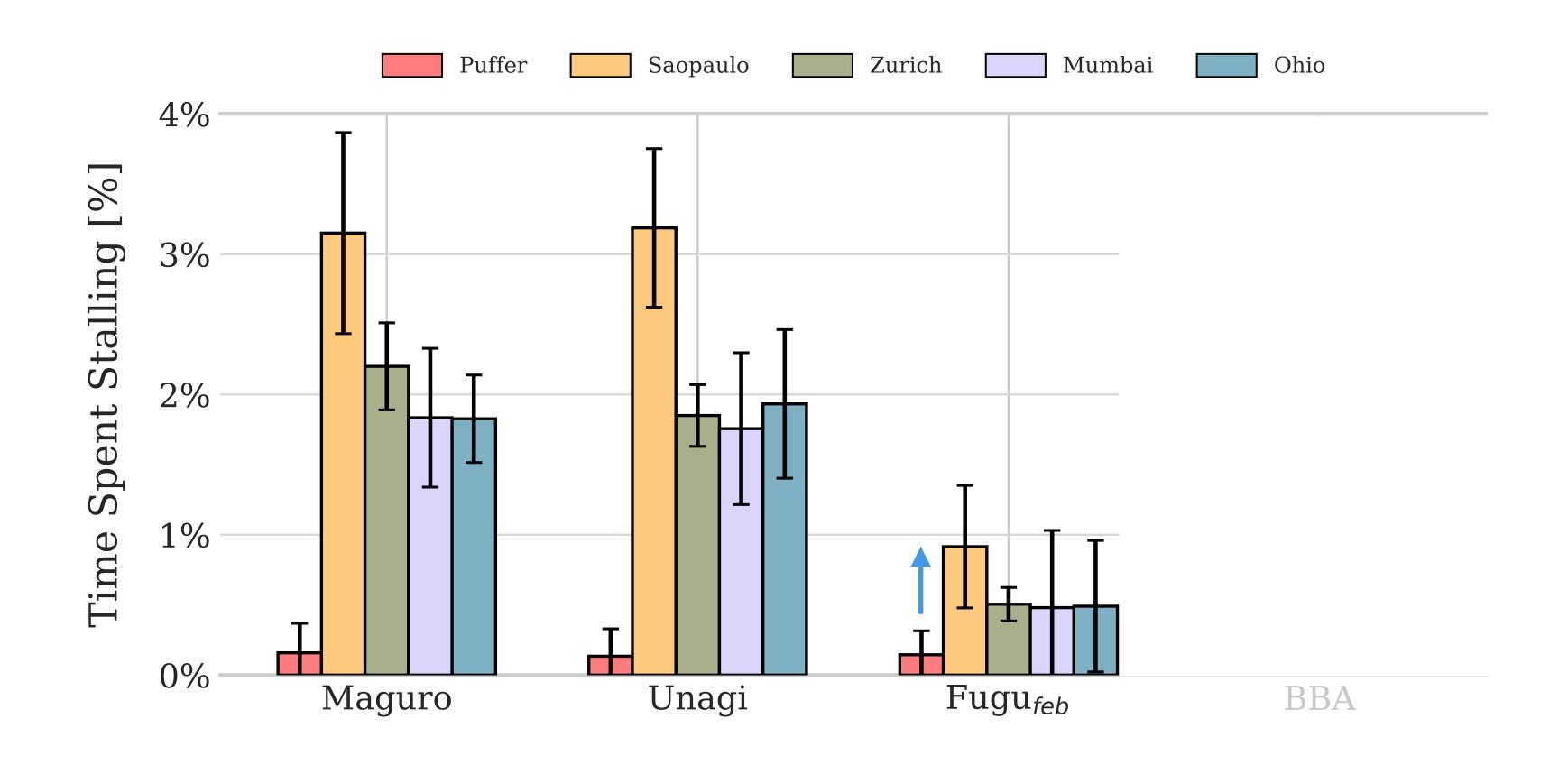


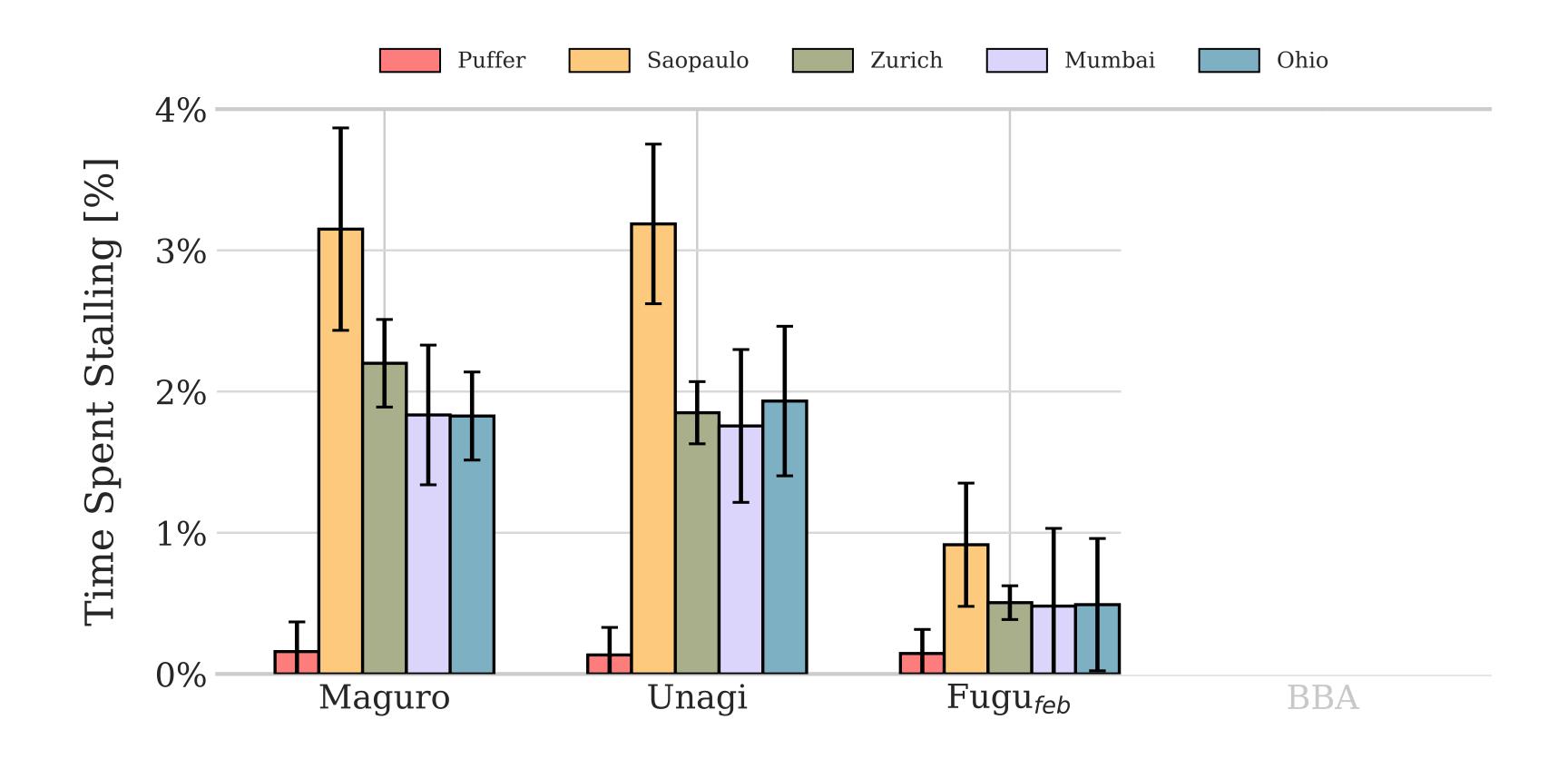


→ There is likely a gap between results on Puffer and deployments in practice!

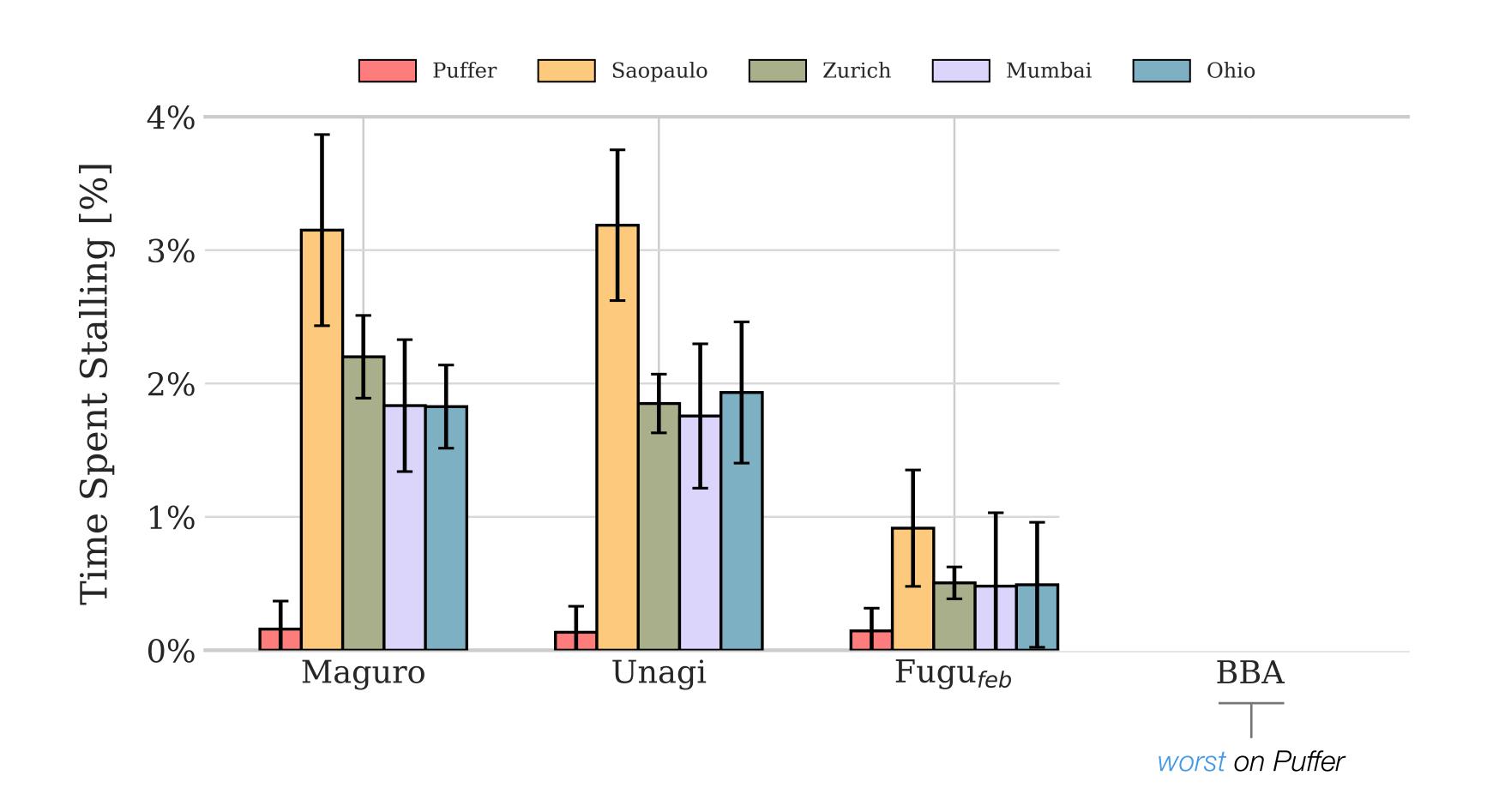


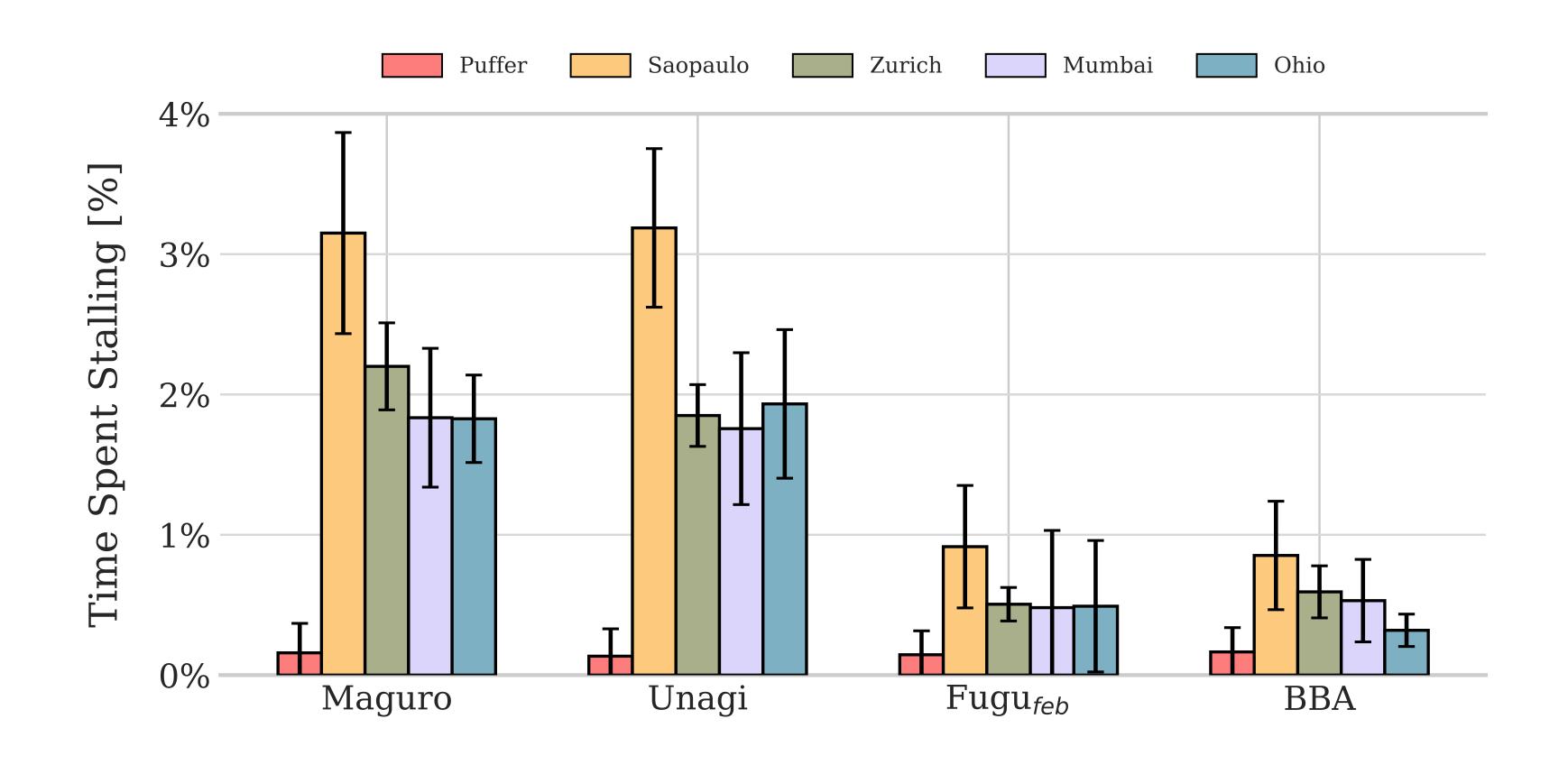


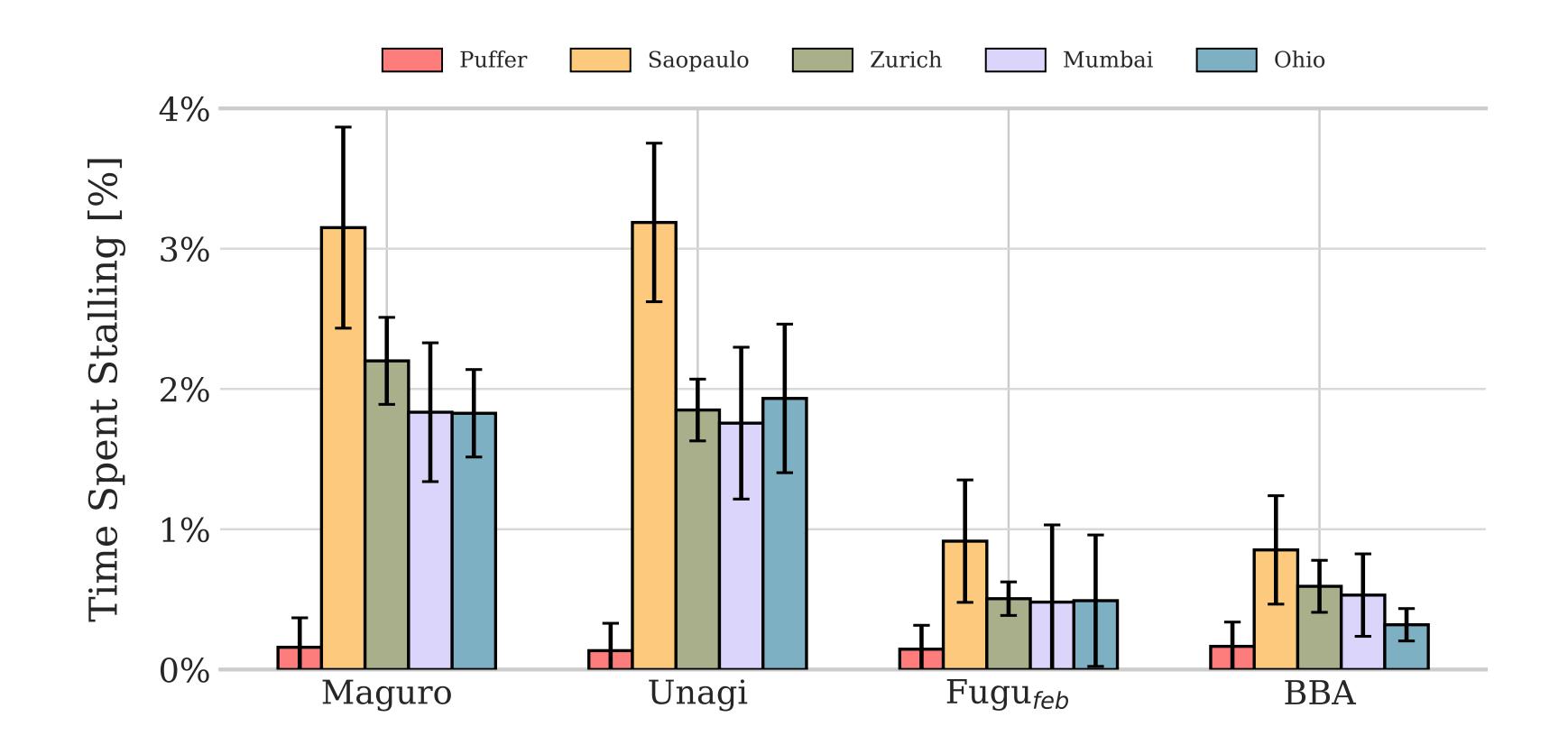




→ There is likely a gap between results on Puffer and deployments in practice!







→ ABR-Arena allows for establishing a more robust leaderboard!

Performance differs significantly between training context and deployment

- Performance differs significantly between training context and deployment
- Performance varies across our ABR-Arena deployments

- Performance differs significantly between training context and deployment
- Performance varies across our ABR-Arena deployments
- Relative ranking between ABR algorithms varies

ABR-Arena allows for:

ABR-Arena allows for:

Identifying the gap between results in training context versus in practice

ABR-Arena allows for:

- Identifying the gap between results in training context versus in practice
- Establishing a robust comparison or leaderboard of ABR algorithms

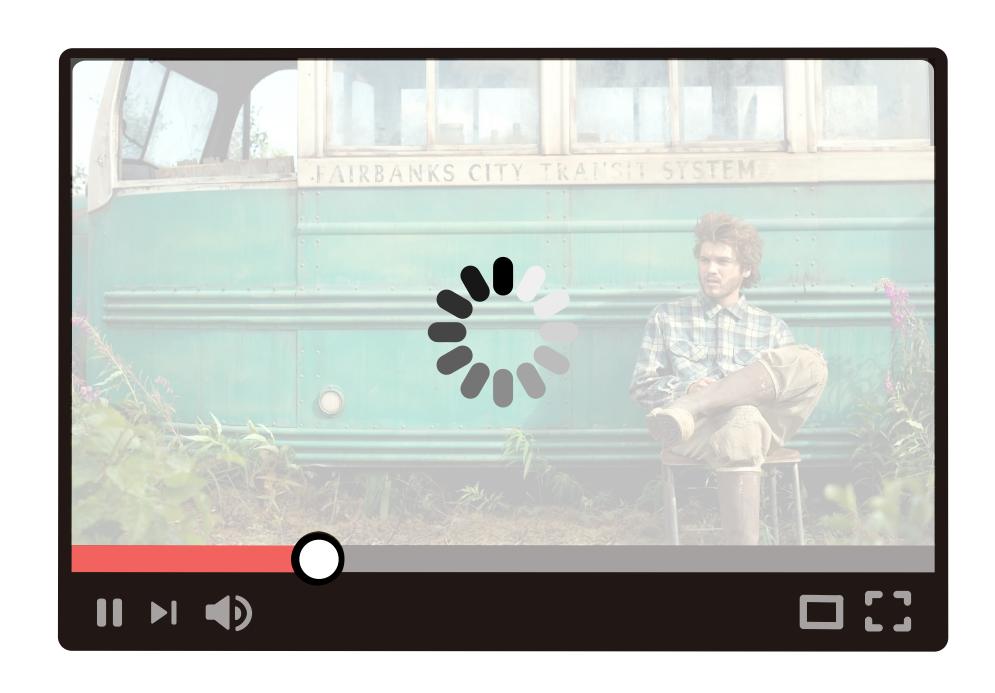
ABR-Arena allows for:

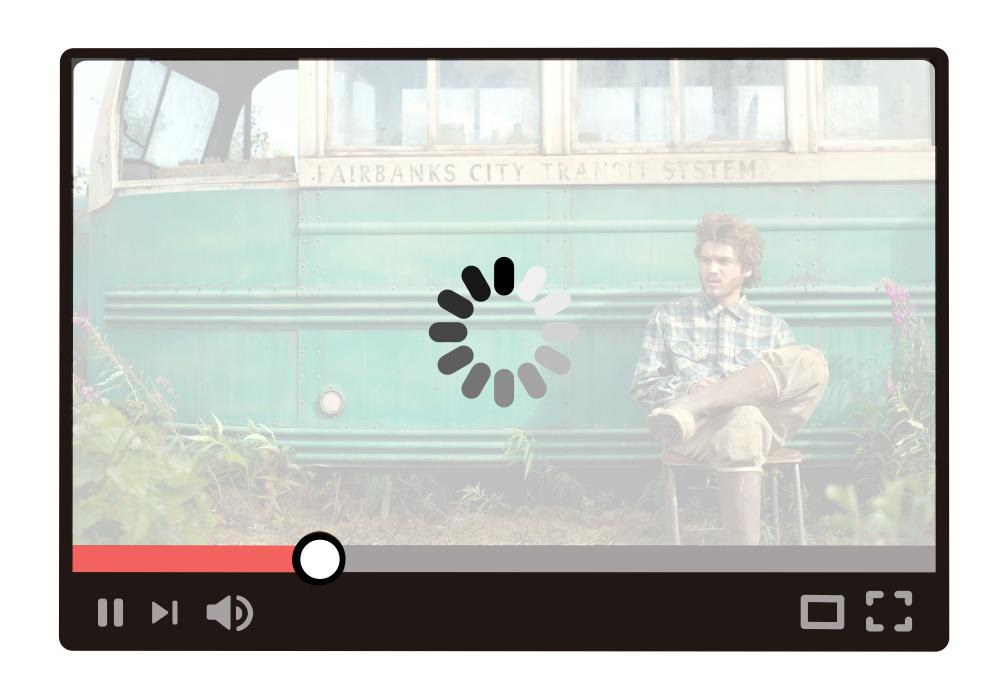
- Identifying the gap between results in training context versus in practice
- Establishing a robust comparison or leaderboard of ABR algorithms
- Closing the performance gap by collecting diverse training data

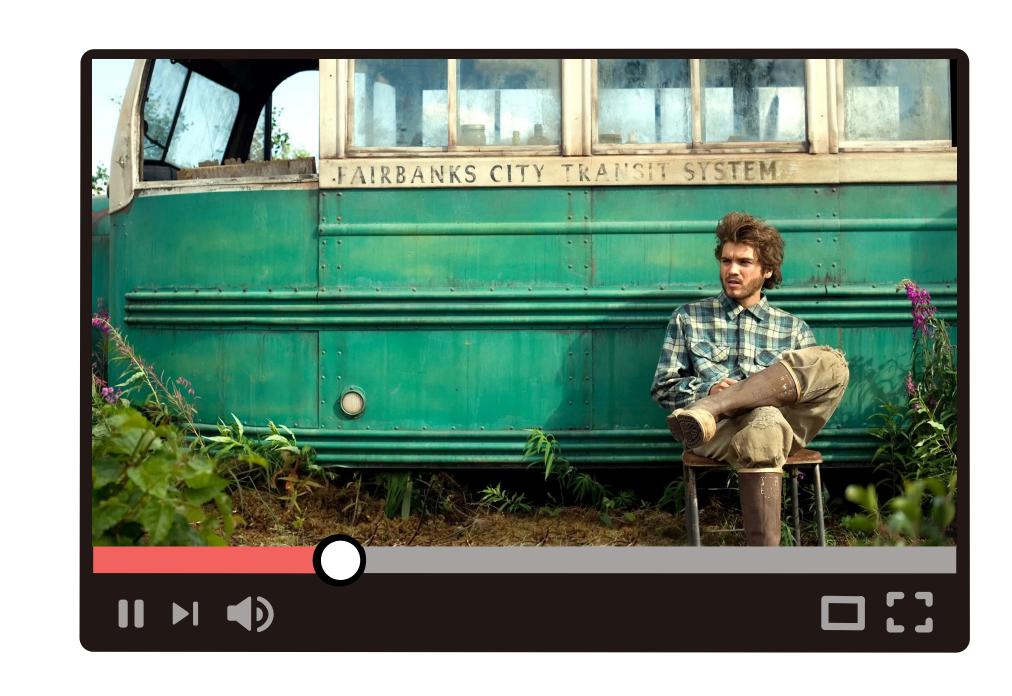
ABR-Arena allows for:

- · Identifying the gap between results in training context versus in practice
- Establishing a robust comparison or leaderboard of ABR algorithms
- Closing the performance gap by collecting diverse training data

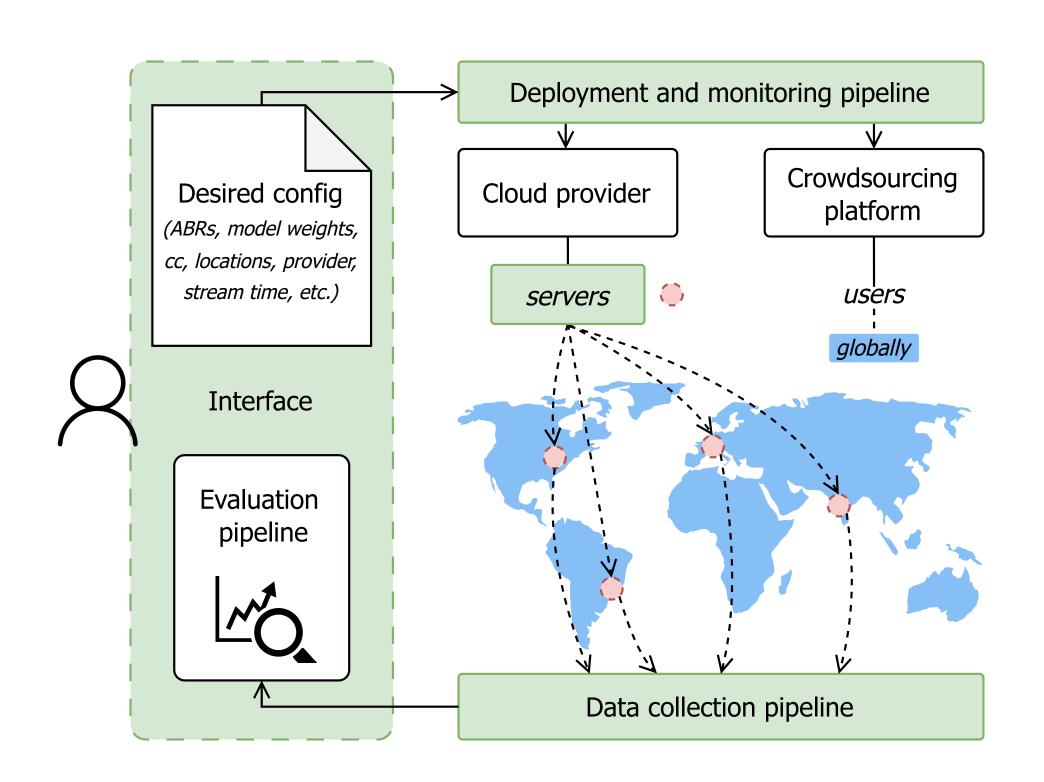
→ We will open-source ABR-Arena to support the community in their research







Thank you for your attention!



Find ABR-Arena:

- · Website: abrarena.com
- Code: github.com/nsg-ethz/ABR-Arena

Get in touch:

- · Linkedin: linkedin.com/in/benjaminhoff
- · Email: bhoffman@ethz.ch

References

- [1] A. Dietmüller, et al., "On Sample Selection for Continual Learning: a Video Streaming Case Study," 2024
- [2] Sandvine Corporation, "Video Permeates, Streaming Dominates," 2023
- [3] F. Yan, et al., "Learning in situ: a randomized experiment in video streaming," 2020
- [4] S. Patel, et al., "Practically High Performant Neural Adaptive Video Streaming," 2024
- [5] T. Huang, et al., "A buffer-based approach to rate adaptation: evidence from a large video streaming service," 2014