

Learning More With Less: Sample-Efficient Model-Based RL for Loco-Manipulation

Benjamin Hoffman¹, Jin Cheng¹, Chenhao Li², Stelian Coros¹

 $^1 \hbox{Computational Robotics Lab, ETH Zurich}$

²ETH AI Center, ETH Zurich

Website

1 Introduction

Loco-manipulation platforms face complex dynamics and the black-box nature of state-of-theart commercial platforms, making them hard to accurately model and control in practice, especially when data and simulation access is limited.

We address this challenge by combining a handcrafted kinematic model with BNN-based MBRL to efficiently learn the robot's dynamics from limited data and derive accurate control policies, validated on the Boston Dynamics Spot.

2 Approach

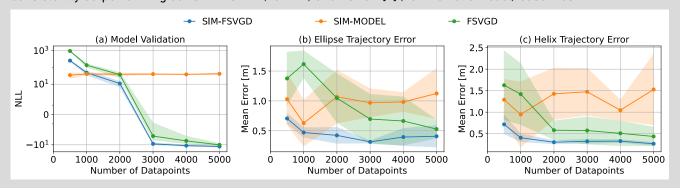
- 1 Formulate MDP: $(S, A, f, r, \gamma, \mathbf{s}_0)$
- 2 Derive kinematic model from first principles:

$$\begin{aligned} \mathbf{v}_{\text{base},t+1} &= \alpha_{\text{base}} \cdot \mathbf{v}_{\text{base},t} + (1 - \alpha_{\text{base}}) \cdot \mathbf{u}_{\text{base},t} + \beta_{\text{vel},\text{ base}} \\ \mathbf{p}_{\text{base},t+1} &= \mathbf{p}_{\text{base},t} + \Delta t \cdot \mathbf{v}_{\text{base},t+1} \cdot \gamma_{\text{base}} + \beta_{\text{pos},\text{ base}} \\ \mathbf{v}_{\text{ee},t+1} &= \alpha_{\text{ee}} \cdot \mathbf{v}_{\text{ee},t} + (1 - \alpha_{\text{ee}}) \cdot \mathbf{u}_{\text{ee},t} + \mathbf{v}_{\text{ee},\text{ rot.-ind.},t} + \mathbf{v}_{\text{base},t+1} + \beta_{\text{vel},\text{ee}} \\ \mathbf{p}_{\text{ee},t+1} &= \mathbf{p}_{\text{ee},t} + \Delta t \cdot \mathbf{v}_{\text{ee},t+1} \cdot \gamma_{\text{ee}} + \beta_{\text{pos},\text{ee}} \end{aligned}$$

- Use kinematic model to efficiently learn a model $\hat{f}_{\theta}(s_t, u_t)$ of the system dynamics via SIM-FSVGD [1]
- Use learned model of system dynamics to derive feedback control policies π via RL

3 Results

We demonstrate the effectiveness of our approach by accurately tracking two trajectories with the Spot, consistently outperforming our SIM-MODEL (no BNN) and FSVGD [2] (no kinematic model) baselines.



4 Conclusion

By deriving a hand-crafted kinematic model and using BNN-based dynamics learning via SIM-FSVGD, our approach enables efficient policy learning for loco-manipulation on a commercial quadruped with a manipulator.

Future work could explore including the end-effector orientation into our action- and state space to enable more complex tasks. Further, fully exploiting Spot's dynamic capabilities by tracking trajectories our performing tasks that require even faster motion of the base, such as catching a ball, could be investigated.

References