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ABSTRACT

Essential networking applications, such as video streaming, require
accurate network models to estimate current and future network
states (e.g., is the network congested?). Due to the complexity of
today’s networks and the subsequent difficulty of this modeling
task, Machine Learning (ML)-based approaches have emerged as an
alternative to first-principle modeling methods. However, proposed
ML algorithms suffer from a generalization crisis: they often fail
to perform in deployments outside of their training environment.
Moreover, simple solutions such as naively training on more data
do not guarantee improved generalization performance.

We propose an interpretable approach to improving model gen-
eralization by focusing on the quality of a dataset over sample
quantity already during data collection. Notably, our approach’s
interpretability allows us to reason on which environments to pri-
oritize at the data acquisition stage. To this end, we investigate
the impact of dataset metrics such as Round Trip Time (RTT) and
throughput on both in-distribution (ID) and out-of-distribution
(OOD) model performance. Our results suggest that strategically
performing data collection in environments with broader state-
space coverage in areas of higher RTT and lower throughput is key
to achieving improved model generalization and OOD performance.
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1 INTRODUCTION

Accurately modeling a network’s state is a fundamental challenge
across many networking applications. For example, to provide ro-
bust performance, video streaming services require models for
real-time estimation of the current network state, its propagation
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over time, and the subsequent Transmission Time Prediction of a
video chunk. This modeling problem is inherently difficult in the
networking context: we must contend with a high-dimensional
modeling space that is successively growing ever more complex
as new applications and protocols continue to emerge, while the
space of observable signals has remained almost unchanged.

In response, research has increasingly shifted away from pursu-
ing first-principle modeling methods in favor of using ML-based
approaches in many applications, including video streaming [2,
3,6,7,9, 10, 14], congestion control [1, 8, 13, 15], network traffic
optimization [5], routing [12], and network simulation [16].

The Generalization Problem Applying learning-based meth-
ods has presented a new challenge: to perform well, ML models
require training data or simulation environments that are represen-
tative of their real-world deployments. This is particularly challeng-
ing in the networking context due to the Internet’s dynamic, heavy-
tailed nature, limited centralized observability, and subsequent ham-
pered access to representative datasets. As a result, learned models
often fail to generalize and perform poorly outside of their training
environment, in particular when trained on synthetic data.
Various attempts have been made to address the challenge of
model generalization in the context of video streaming. On one
hand, methods such as Plume [10], CausalSim [3] and Memento [6]
focus on improving existing datasets and simulation environments,
either through clever sampling or by learning a causal model to
mitigate biases in collected traces. In contrast, Puffer [14] advo-
cates for real-world learning in situ and against pursuing model
generalization across different deployment environments.

Strategic Data Collection We argue that the challenge of model
generalization should be addressed at the source, i.e., by already
focusing on the (i) quality of a dataset (ii) during the data collection
stage. Similarly to Plume and Memento, we observe that simply
using more training data does not necessarily improve model per-
formance or generalization. However, instead of reasoning on how
to select representative samples from an existing dataset, we focus
on how to select representative (real-world) environments for data
collection. To this end, we investigate how the distribution of RTT
and throughput of a training set impacts both ID and OOD model
performance. To achieve broad diversity in our training sets, we
collect real-world traffic data using servers and clients globally.
Our initial results show that training on data collected in real-
world environments with a broader state-space coverage in areas of
higher RTT and lower throughput leads to improved generalization
across OOD environments, without sacrificing ID performance.
This suggests that RTT and throughput can be interpreted as proxy
metrics for the underlying diversity of an environment and that
prioritizing such diverse environments during data collection is
key to improving the generalization of network traffic models.
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2 PRELIMINARY EVALUATION

With video streaming being the most prevalent internet application
(65% of all traffic in 2023 [11]), we focus on ML-based models for
chunk Transmission Time Prediction to demonstrate the effective-
ness of our approach. As the transmission time is a function of the
current network conditions, its prediction requires estimating the
latent network state. This estimation, in turn, is at the core of many
other learning-based methods across networking applications, lend-
ing relevance to our approach beyond video streaming.

Model and Data Collection We use an encoder to estimate the
latent network state from history and a decoder to predict the chunk
transmission time from the action and estimated latent state. For
data collection, we customize and employ the video streaming data
collection infrastructure from Puffer. To achieve a broad diversity of
environments, we utilize NetUnicorn [4] to deploy our infrastructure
to data centers worldwide and stream to real clients across the globe.

Evaluation We evaluate the effectiveness of our approach by
training one model per dataset, each collected in a distinct environ-
ment: Ohio (server hosted in an AWS data center in Ohio, USA) and
Zurich (server hosted at ETH Ziirich, Switzerland). In both cases, we
stream to real clients globally. We then investigate the differences
in the dataset distributions, as well as their impact on ID and OOD
model performance compared to simply increasing the dataset size,
highlighting the importance of strategic data collection.
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Figure 1: Joint and marginal Kernel Density Estimates (KDE)
of RTT and throughput. The Zurich environment covers
areas of higher RTT and lower throughput more broadly.

Environment Analysis We analyze the underlying conditions
of our environments based on the distribution of RTT and through-
put that their data exhibits. The joint and marginal Kernel Den-
sity Estimates (KDE) show that the Zurich environment covers
areas of higher RTT and lower throughput more broadly (Figure
1). The RTT mode is shifted to the right (higher RTT) of the Ohio-
environment, and the throughput coverage is shifted slightly below
(lower throughput). In contrast, the Ohio-environment has either
high throughput or high RTT, lacking broad coverage in between.
These distinct distributions highlight how we can use RTT and
throughput as proxy metrics to describe the underlying conditions
of an environment, as well as the data we can collect in it.

B. Hoffman, A. Dietmiiller, and L. Vanbever

150

("}JJ Train Test

=125 Ohio — D

o i _

LItJ 1.00 B Zurich 0o0oD

5

50.75\

9 S

£050 Nyeooo o o
17 10 20 30 40 50 60 70 80 90 100

Training Set Size (in thousands)

Figure 2: The Zurich-trained model (blue) generalizes well
to the Ohio environment, while the Ohio-trained model (or-
ange) fails to generalize to the Zurich environment.

Model Performance We evaluate the chunk Transmission Time
Prediction performance of our trained models on test sets from
their own training environment (ID) and the respective other en-
vironment (OOD) across increasing training set sizes (Figure 2).
The difference in OOD performance highlights the importance of
strategically collecting data instead of simply collecting more data.
The performance of the Zurich-trained model (blue) improves with
increasing training set size, both in the ID and OOD environments.
Notably, it rapidly converges to the performance of the Ohio-trained
model in the Ohio environment, i.e., it generalizes well. In contrast,
the performance of the Ohio-trained model (orange) decreases in
the OOD environment, i.e., the model fails to generalize.

While we can see diminishing returns across all experiments,
this significant difference in OOD performance suggests that the
underlying differences we observed in the training sets impact
how well their respective model generalizes. More particularly, it
indicates that the broader coverage in areas of higher RTT and lower
throughput in the Zurich dataset leads to improved generalization
of a model trained on it. Our findings suggest that higher RTT
and lower throughput are the results of a variety of variables in
our network exhibiting higher diversity. With this diversity in
the underlying network conditions largely lacking in the Ohio
environment, adding more training samples only reinforces the
model’s ID performance, while decreasing its OOD performance,
i.e., the model subsequently overfits and fails to generalize.

3 CONCLUSION AND FUTURE WORK

We have presented an interpretable approach to improving model
generalization through strategic data collection. To address this
challenge, we focus on how to select representative (real-world)
environments for data collection using networking-specific metrics
and domain knowledge. In future work, we will further explore
the potential and limitations of our approach. In particular, we will
investigate whether RTT and throughput remain meaningful proxy
metrics for choosing training data across other learning-based pre-
diction tasks and environments. Furthermore, we will examine how
our approach’s performance compares to methods focused on sam-
pling representative training data from existing datasets, and lastly,
whether our insights allow us to generate representative synthetic
datasets that yield equal generalization performance.
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