
Towards Network Model Generalization

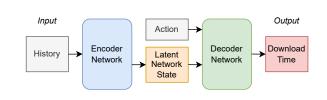
Benjamin Hoffman, Alexander Dietmüller, Laurent Vanbever

Observation

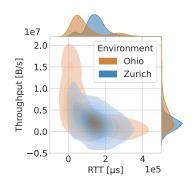
ML models in networking fail to generalize and naively training on more data does not help.

- Diminishing returns in In-Dist. performance
- Decrease in Out-of-Dist. performance
- → ML models require representative data

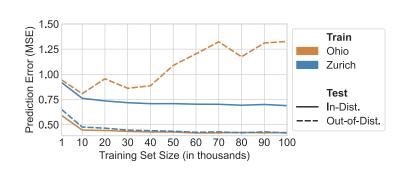
Video-chunk Transmission Time Prediction


Strategic Data Collection

We collected more representative datasets by streaming to real clients globally.


Model Architecture

We used an Encoder-Decoder architecture for *Transmission Time Prediction* (TTP).



Preliminary Results

Datasets that broadly cover higher RTT and lower throughput areas improve generalization.

Kernel Density Estimates (KDE)

Video-chunk Transmission Time Prediction

Future Work

Where are the limits?

- → Do our findings hold at more extreme RTT and throughput values?
- → Do RTT and throughput remain good proxy metrics for other prediction tasks, environments and architectures?

How can we deepen our insights?

- → Can we use our findings to generate representative synthetic datasets with equal generalization performance?
- → Which other metrics can we explore as proxies for a dataset?

Extended Abstract:

